分数除法教学反思

时间:2024-09-24 10:45:53
分数除法教学反思15篇

  身为一位到岗不久的教师,我们要有很强的课堂教学能力,通过教学反思可以有效提升自己的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编为大家收集的分数除法教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

分数除法教学反思1

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1.以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2.分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

  1.提供丰富的素材,经历“数学化”过程。

  分数与除法关系的理解,是以具体可感的.实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  2.问题寓于方法,内容承载思想。

  数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

  就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

分数除法教学反思2

  “分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思

  验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的.一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

  观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

  情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

分数除法教学反思3

  今天教学了“分数与除法”这一课,例题3——我备课时的一个重、难点,因此,在这部分我给了学生充分的探究时间,又组织学生分小组讨论,引导他们按着书上的提示去思考。我又从意义和算法两方面入手,分别详细地讲解了每种方法。一直讲了十多分钟,“明白了吗?”“明白了!”学生点头回答。我满意的`笑了。

  接下来的“做一做”中就有类似的题,我让学生自己完成,并说说自己的想法。心里还不免有些担心,怕他们说不好。哪知学生一张口竟是“和以前学过的谁是谁的几倍做法一样。”我一愣,可不是嘛,如果联系以前所学的知识,这个例题十分简单且容易理解,可是竟被我弄的如此复杂。于是我大大表扬了这个同学一番,“你真会学习,能够联系以前所学的知识进行对比着学,真棒!”

  课后我反思,其实很多时候我们老师备课备的还远远不够。我们往往只备教材,却忘了备学生,忽略了学生已有的知识水平和能力。有时又只从本节课出发,却忘了应将旧知与新知联系起来进行系统的学习。如果我们每次备课都充分考虑到了这些,恐怕会少走很多弯路吧!

分数除法教学反思4

  这节课是分数除法教学的起绐课。分数除法的意义及计算方法是本单元的重要内容,也是学生理解的困难之处。我是想作为分数除法的第一个知识点,利用折一折,算一算等活动,让学生在实际操作中借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。分数除以整数是学生学习了分数乘法和认识了倒数的基础上进行的,学生之前已掌握了分数乘分数的计算方法,为本节课的新知学习起到了良好的铺垫作用。

  在教学中注重以下几点。

  1、 强调知识的`迁移和类推。

  在教学中,先复习整数除法意义再进行分数除法意义的教学,可以使学生利用知识的迁移和类推很容易得出分数除法的意义。

  2、 以自主探索为主。

  提供给学生自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同算法,尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中,进一步明确算理。

  一节有效的课堂应该建立在有效的小组合作上,整节课下来我发现在小组合作方面我还应多钻研,如何调动小组的积极性?如何让小组的每一位成员都乐于参与其中?将是我接下来主要的研究方向,真正做到合作、交流、共同探究!

分数除法教学反思5

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在讲这节课之前,本来以为是很简单的一节课,学生在理解分数与除法的关系时也一定会很容易,唯一的难点是用除法的意义理解分数的意义,我想只要借助实物圆形纸片给学生演示一下,学生就会理解了,但当我讲完这节课后,才发现我的想法太简单了,我把学生想象成理想化的学生了,这部分知识虽然有一部分学生理解了,但仍有一部分学生在用除法的意义理解分数还很困难。在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时, 能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的'不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

分数除法教学反思6

  一个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。

  教学目标我是这样定位的:

  1. 通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。

  2. 在合作探究的过程中,提高迁移类推、分析比较的综合能力。

  3. 获得成功的体验,认同数学在生活中应用的广泛性。

  在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的.依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。

  总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。

  对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。

分数除法教学反思7

  《分数除法》第一课时包含了两方面的内容:分数除法的意义和分数除以整数。本课时是在学习了倒数的基础上开展教学,所以学生已经理解了倒数的意义。实验教材与老教材比较,对于分数除法的意义教学有所弱化,不再要求学生讲清楚每道分数除法的意义,而是改为利用除法算式改写出乘法算式,相对来说,降低了本节课的难度,更加贴合学生实际情况。根据以上情况,本节课把重点定在理解分数除以整数的算理和计算方法上,其中,理解算理是本节课的难点。

  教学本节课时,我首先出示4/52,直奔主题。利用例题,让学生进行探究学习。让他们先说说解题设想,包括折一折、画一画、算一算等方式。出乎我意料的是学生经过思考后,争先恐后地说出了多种解答方法。虽然有些方法都是不恰当的,但是学生积极主动的思考,使我感到最高兴的事。有些学生的每种算法把算理都解释得非常清楚。然后引导然后学生说说3份或其他几份怎么算。计算:4/53。最后引导归纳出:把一个数平均分成几份,求其中一份,就是求这个数的几分之一。

  《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。

  在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的'办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。

  同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

分数除法教学反思8

  在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的'关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

  成功之处:

  1.读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的结果说出所表示的意义。

  2.留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

  (1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

  (2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

  (3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

  (4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

  不足之处:

  对于除法算式的两层含义,个别学生还是有些混淆。

  再教设计:

  让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

分数除法教学反思9

  人教版六年级上册第三单元“分数除法应用题”的教学是本册的一个教学重点和难点。很多老师都深感在此处和学生说不清,教学效果不佳。我个人通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下我的一些比较成功的做法。

  一、加强前后知识之间的联系,实现知识的正迁移。

  要想第三单元学生学的顺利,第二单元知识的学习一定要铺垫好。

  一是,一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。

  二是,能快速地根据题中的关键句判断出谁是单位“1”。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“1”的方法:是“谁”几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“1”。最简单的方法是:分率前面的量就是单位“1”。

  三是,学生要熟练掌握画线段图的方法。比如要先画单位“1”(因为单位“1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。

  四是,能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。

  例:“柳树是杨树的 ”等量关系式:杨树× =柳树

  “柳树比杨树多 ”等量关系式:杨树+杨树× =柳树 或者 杨树×(1+ )=柳树 这样学生在学习用方程解决分数除法应用题时“找等量关系式”就轻松多了。

  二、教学分数除法应用题的`时候要复习到位,唤醒学生已有的知识经验。

  比如教学第三单元分数除法“解决问题”例1的时候,就要复习一下学生学习第二单元分数乘法“解决问题”例1的知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例2时,就要对应复习第二单元乘法解决问题例2和例3的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。

  三、在教师的引导下提高学生读题、分析题的能力。

  刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多 是多“谁”的 ?(多杨树的 )④到底多多少,具体的量怎么算?(杨树× )⑤这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)

  当然,还有一种等量关系式:杨树×(1+ )=柳树 可由以下几个问题入手:①柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )②即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。

  学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。

  总之,我通过运用以上的教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。

分数除法教学反思10

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的.分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法教学反思11

  今天我们学习了“分数乘、除法应用题对比”,对于三道例题的解决学生们显得驾轻就熟,接下来的对比分析一个人的力量显得有点薄弱,毕竟学生的差异性是存在,我们在尊重学生差异性的同时要让学生有最大的发展,如果教师和学生一个人一个人的交流效率太低,怎么办呢?我想到了我的小组学习研究,如果让学生在小组中群策群力,集中解决问题,在这个环节上应该是比较好的策略。于是,我把这个环节设计为让学生以小组为单位找出三道题目的相同点和不同点,可以采取画表格的形式由一个学生展示,也可以让小组成员分工合作一起展示。要求提出后学生们很快地进入自己小组的研究中。我则一个小组一个小组的观察、偶尔交流几句。大约6分钟后,我们开始交流,实录如下:

  师:怎么样?发现什么了?

  学生1:发现它们的数量没有变化,鸭12只,鹅4只,鹅是鸭1/3

  学生2补充:线段图的结构都一样

  师:线段图表示的是题目中的数量关系,线段图结构没有变化,其实是什么没有变啊?

  生1:数量关系没有变,都是鸭的只数×1/3=鹅的只数,三道题目中都有这个数量关系。

  生3:单位“1”的量也没有变化,都是鸭的只数,第一道题目从问题中找,其他两道题目从条件中找。

  师:这三道题目中相同点找得很好,谁来谈谈不一样的地方

  生4:问题都不一样。

  生5(着急):条件也发生了变化,解答方法就不一样了。

  生3:单位“1”的量,在第一道和第二道题目中是已知的,在第三道题目中是未知的,列出等量关系式后,可以用方程解答。

  师:真是细心的孩子,利用一个数乘分数的意义列出等量关系式后,发现单位一的量是未知的就可以用方程解答了。

  师:谁还想说?

  生6:我认为解题的时候找好单位一的量,然后根据题目中的数量关系认真解答题目,做完后好好检查。

  师带头鼓掌。

  师小结:解答应用题,我们要“知其然还要知其所以然”,找准单位一的量,认真解答,做完后要仔细检查,就能做一个解决问题的小能手了。

  在这个环节的教学中,发言的孩子是各个不同小组的',小组同学把自己小组找到的东西综合到一起,利用表格的形式展示,特别是等量关系式的运用,我没有提示,使学生在小组讨论的时候发现的,可以说是这一环节上的一个创新。但是这个环节也存在问题,我的目的是让每个学生都有发言的机会,利用集体的力量解决问题,可是有几个孩子对这个活动很漠视,一些孩子发言积极,但是不知道让其他人发言,小组的组织性还很差,需要进一步规范

分数除法教学反思12

  数学课要学分数除以整数了,这节课的内容比较简单,班级的大屏也坏了,让学生自学吧。

  开始我先提出了自学要求。孩子们开始学了起来。陆续有孩子学完举手了。学生通过猜想——尝试——验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。所以,乘以一个数就等于除以这个分数的倒数。然后就进行了练习,学生学习效果也不错,此时,我抛出了一个问题:一个数除以分数为什么要乘以这个数的倒数呢?多数学生没有了做题后的兴奋了。只是因为结果相同啊。学生不明白算理。只知其然而不知其所以然。我知道,这个知识点是我要给孩子们讲解的地方。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。

  从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的.训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。一节课中什么时候该讲,什么时候让学生自学,正如侯校长说的那样,真的需要老师好好琢磨呀。

分数除法教学反思13

  本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把四个饼平均分给四个小朋友,每个小朋友可以分得几块?再把三个饼平均分给四个小朋友,每个小朋友分得几块?让学生分别列式。然后引导学生比较两个算式的'结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面也可以让学生初步的感知到分数与除法之间确实是有关系的。这样学生学习的目的明确些,兴趣也高一些。在例题的教学中,学生对分数与除法之间的关系还是比较容易理解的,掌握的也不错。我重点是强调了单位换算,通过引导学生比较,发现单位间的进率就是分母的结论。学生运用这样的结论进行相关练习时正确率有很大的提高。

分数除法教学反思14

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的'长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

分数除法教学反思15

  我又一次后悔自己没用录像机记录下课堂上学生精彩的辩论,要知道这种对抗式的辩论是课前无法预设的,值得庆幸的是可以赶紧利用吃饭时间回味并用文字把本学期难得遇到的这次“精彩”整理下来。

  今天早上第四节课要处理第二节没处理完的《分数乘除法应用题对比练习》导学案,第二节临近下课时我说要各组把本组错误最多的题或者不会的题出示在黑板上,其中第四组的组长曲晓燕带着小黑板上了讲台,小黑板上出示的题目是:商店运来一批苹果,其中苹果有180千克,比梨多九分之一,苹果比梨多多少千克?她引导大家分析完这道题后,我心里正想着这一组抓住了这份导学案最容易出错的一道题,该如何表扬他们时,林立浩一个箭步冲上讲台,说这道题还有一种解法:算梨的重量可以用180+180÷,当时有个别学生小声嘀咕:“该用减法而不是加法,因为最后问题是苹果比梨多多少千克?”我重述后林立浩说:“我算的是梨的重量,最后再用苹果的重量减去梨的重量就行了。”还有学生欲言又止,看来有学生知道这种方法不对,但不知道为什么不对,我开始征求学生的.意见:“同意曲晓燕这种做法的举手”呼啦啦几十个学生都举手了,“同意林立浩这种解法的举手”只有吴州航、吴欢欢、张翼泽等五六学生,于是我把全班分成两大组讨论你如何把对方说服,其中同意林立浩这种解法的五六个同学编为B组,围在一起讨论。

  巡视时,我发现第一小组的一个学生说:“老师,照他这样算,答案都1000多了,那就不对!”还有一个学生说:“这两个算式利用的不是除法的性质。”我说:“除法的性质是什么?”他无言。另一个学生想补充但是说半截好像发现自己说错了。B组的成员已经开始在黑板上画线段图了。

  辩论开始,B组的林立浩开始指着线段图为大家讲解,梨多苹果果180千克?

  在讲解过程中有很多漏洞,同学们一一指出,他甚至把线段图改为多180千克?

  梨苹果果

  最后临下讲台时,他自言自语:“错了,错了”没想到他的两个接班人继续上来讲述他们的思路。

  三个B组成员讲完之后,付晓霞才站起来反驳:单位“1”未知用除法,用几分之几对应的量除以几分之几,而你们的量和分率根本就不对应,也就是说苹果的重量180千克对应的分率不是九分之一。紧接着禹青青站起来说:他们的线段图画的就不对,苹果的重量180千克应该是这一段,她边说边上讲台用红笔标识。

  梨多苹果果180千克?

  而除法的性质没有同学提,在我的提示下,平时很大方的赵鹏涛才扭扭捏捏地站起来说,两个算式之间不是利用除法的性质,问起除法性质的内容,他说a÷(b+c)=a÷b+a÷c,又暴露出一个问题,此时下课铃已经响起。

【分数除法教学反思】相关文章:

分数与除法教学反思07-16

分数除法的教学反思06-17

分数除法教学反思04-05

《分数与除法》数学教学反思06-11

《分数与除法的关系》教学反思06-14

分数除法教学反思范文01-04

《分数除法三》的教学反思03-05

分数除法的教学反思15篇03-05

分数除法的教学反思(15篇)03-13