七年级数学下册知识点总结

时间:2023-10-20 16:41:54
七年级数学下册知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此要我们写一份总结。总结一般是怎么写的呢?下面是小编收集整理的七年级数学下册知识点总结,欢迎阅读与收藏。

七年级数学下册知识点总结1

  相交线与平行线

  1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

  3、两条直线被第三条直线所截:

  同位角F(在两条直线的同一旁,第三条直线的同一侧)

  内错角Z(在两条直线内部,位于第三条直线两侧)

  同旁内角U(在两条直线内部,位于第三条直线同侧)

  4、两条直线相交所成的.四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

  5、垂直三要素:垂直关系,垂直记号,垂足

  6、垂直公理:过一点有且只有一条直线与已知直线垂直。

  7、垂线段最短。

  8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

  9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c

  10、平行线的判定:

  ①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

  11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

七年级数学下册知识点总结2

  (一)正负数

  1、正数:大于0的数。

  2、负数:小于0的数。

  3.0即不是正数也不是负数。

  4、正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2、整数:正整数、0、负整数,统称整数。

  3、分数:正分数、负分数。

  (三)数轴

  1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2、数轴的三要素:原点、正方向、单位长度。

  3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4、绝对值:正数的`绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  (四)有理数的加减法

  1、先定符号,再算绝对值。

  2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

  4、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

七年级数学下册知识点总结3

  1、整式的乘除的公式运用(六条)及逆运用(数的计算)。

  (1)an·am

  (2)(am)n=

  (3)(ab)n=

  (4)am÷an

  (5)a0(a≠0)

  (6)a—p==

  2、单项式与单项式、多项式相乘的法则。

  3、整式的乘法公式(两条)。

  平方差公式:(a+b)(a—b)=

  完全平方公式:(a+b)2(a—b)2

  常用公式:(x+m)(x+n)=

  4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

  5、互为余角和互为补角和

  6、两直线平行的条件:(角的关系线的平行)

  ①相等,两直线平行;

  ②相等,两直线平行;

  ③互补,两直线平行。

  7、平行线的性质:两直线平行。(线的平行

  8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

  9、变量中的图象法,注意:

  (1)横、纵坐标的对象。

  (2)起点、终点不同表示什么意义

  (3)图象交点表示什么意义

  (4)会求平均值。

  10、三角形

  (1)三边关系:角的关系)

  (2)内角关系:

  (3)三角形的三条重要线段:

  (4)三角形全等的'判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)

  (5)全等三角形的性质:

  (6)等腰三角形:

  (a)知边求边、周长方法

  (b)知角求角方法

  (c)三线合一:

  (7)等边三角形:

  11、会判轴对称图形,会根据画对称图形,(或在方格中画)

  12、常见的轴对称图形有:

  13、对称轴

  (1)等腰三角形:对称轴,性质

  (2)线段:对称轴,性质

  (3)角:对称轴,性质

  14、尺规作图:

  (1)作一线段等已知线段

  (2)作角已知角

  (3)作线段垂直平分线

  (4)作角的平分线

  (5)作三角形

  15、事件的分类:会求各种事件的概率

  (1)摸球:P(摸某种球)=

  (2)摸牌:P(摸某种牌)=

  (3)转盘:P(指向某个区域)=

  (4)抛骰子:P(抛出某个点数)=

  (5)方格(面积):P(停留某个区域)=

  16、必然事件不可能事件,不确定事件

  17、方法归纳:

  (1)求边相等可以利用

  (2)求角相等可以利用。

  (3)计算简便可以利用。

  18、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

  初中数学重点知识点

  平行:

  ①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:

  ①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  初中提高数学成绩诀窍

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

七年级数学下册知识点总结4

  一.整式

  ※1.单项式

  ①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.

  ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

  ③一个单项式中,所有字母的指数和叫做这个单项式的次数.

  ※2.多项式

  ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

  ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的'次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

  ※3.整式单项式和多项式统称为整式.

  二.整式的加减

  1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

  2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

  三.同底数幂的乘法

  ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  四.幂的乘方与积的乘方

  ※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

  ※2..

  ※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

  如将(-a)3化成-a3

  ※4.底数有时形式不同,但可以化成相同.

  ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

  ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

  ※7.幂的乘方与积乘方法则均可逆向运用.

  五.同底数幂的除法

  ※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

  ※2.在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

  ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;

七年级数学下册知识点总结5

  丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

  平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、常见的几何体及其特点

  长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的.长方体。

  棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

  棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

  圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

  圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。

  球:由一个面(曲面)围成的几何体

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:11种

  6、截一个正方体:

  (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形。

  ②、长方体、棱柱的截面与正方体的截面有相似之处。

  (2)用平面截圆柱体,可能出现以下的几种情况。

  (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

  (4)用平面去截球体,只能出现一种形状的截面——圆

七年级数学下册知识点总结6

  1实数

  1、加法

  同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

  2、减法:减去一个数等于加上这个数的相反数。

  3、乘法

  几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负。几个数相乘,有一个因数为0,积就为0。

  4、除法

  除以一个数,等于乘上这个数的倒数。两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0。

  5、乘方与开方

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。

  (3)零指数与负指数。

  2相交线与平行线

  (1)相交线

  在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。

  (2)垂线

  当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

  (3)同位角

  两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的`两个角称为同位角。

  (4)内错角

  两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

  (5)同旁内角

  两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

  (6)平行线

  几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

  平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

  (7)平移

  平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

七年级数学下册知识点总结7

  实数的分类

  1、按定义分类:

  2.按性质符号分类:

  注:0既不是正数也不是负数

  实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0,a、b互为相反数 a+b=0.

  2.绝对值 |a|≥0.

  3.倒数

  (1)0没有倒数

  (2)乘积是1的两个数互为倒数,a、b互为倒数 .

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  (2)一个正数a的'正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  实数与数轴

  数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  3.无理数的比较大小:

  实数的运算

  1.加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

  2.减法:减去一个数等于加上这个数的相反数.

  3.乘法:几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

  4.除法:除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

  5.乘方与开方:

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

  (3)零指数与负指数

七年级数学下册知识点总结8

  1. 一元一次不等式和不等式组:包括不等式的性质、一元一次不等式和一元一次不等式组的解法等。

  2. 二元一次方程组:包括二元一次方程组的解法、代入消元法和加减消元法等。

  3. 平面直角坐标系:包括坐标平面内的点与有序实数对的一一对应关系、根据坐标描点等。

  4. 三角形:包括三角形的性质、分类、三边关系、角度关系等。

  5. 轴对称:包括轴对称图形的概念、性质及其应用等。

  6. 多项式:包括多项式的概念、多项式的次数和项数、整式乘法和因式分解等。

  7. 对顶角和平行线:包括对顶角的概念和性质、平行线的概念和性质、平行线的判定和性质等。

  8. 垂直:包括垂直的'定义和性质、点到直线的距离等。

  9. 同位角、内错角和同旁内角:包括这三种角的概念和性质等。

  以上是七年级下册数学的一些主要知识点,希望能对你有所帮助。

七年级数学下册知识点总结9

  一、同底数幂的乘法

  (m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  b)指数是1时,不要误以为没有指数;

  c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  二、幂的乘方与积的乘方

  三、同底数幂的除法

  (1)运用法则的前提是底数相同,只有底数相同,才能用此法则

  (2)底数可以是具体的数,也可以是单项式或多项式

  (3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

  初中提高数学成绩诀窍

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的'20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

  如何提高解答数学题的能力

  数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

  (1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

  (2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

  (3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

七年级数学下册知识点总结10

  一、知识网络结构

  二、知识要点

  1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。 + = 180°; + = 180°; + = 180°;

  + = 180°。

  4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ;

  5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当= 90°时,⊥ 。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a ⊥ b时,= = = = 90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  6、同位角、内错角、同旁内角基本特征:

  ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

  的两个角叫同位角。图3中,共有对同位角:与是同位角;

  与是同位角;与是同位角;与是同位角。

  ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  平行线的性质:

  性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

  则= ; = ; = ; = 。

  性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则= ; = 。

  性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+ = 180°;

  + = 180°。

  性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  8、平行线的判定:

  判定1:同位角相等,两直线平行。如图5所示,如果=

  或=或=或=,则a∥b。

  判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b 。

  判定3:同旁内角互补,两直线平行。如图5所示,如果+ = 180°;

  + = 180°,则a∥b。

  判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

  10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

  平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

  第六章实数

  【知识点一】实数的分类

  1、按定义分类:2.按性质符号分类:

  注:0既不是正数也不是负数.

  【知识点二】实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  2.绝对值|a|≥0.

  3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  【知识点三】实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  【知识点四】实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  3.无理数的比较大小:

  【知识点五】实数的运算

  1.加法

  同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

  2.减法:减去一个数等于加上这个数的相反数.

  3.乘法

  几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

  4.除法

  除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

  5.乘方与开方

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

  (3)零指数与负指数

  【知识点六】有效数字和科学记数法

  1.有效数字:

  一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

  2.科学记数法:

  把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.

  第七章平面直角坐标系

  一、知识网络结构

  二、知识要点

  1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

  2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

  3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

  5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

  6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。

  7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

  标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“>”、“<”或“=”)

  8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

  9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

  10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。

  11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

  12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的'横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a = b ;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。

  13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

  14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。

  第八章二元一次方程组

  一、知识网络结构

  二、知识要点

  1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

  2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

  3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

  4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

  5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

  6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

  第九章不等式与不等式组

  一、知识网络结构

  二、知识要点

  1、用不等号表示不等关系的式子叫不等式,不等号主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。

  2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

  3、不等式的性质:

  ①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

  用字母表示为:如果,那么;如果,那么;

  如果,那么;如果,那么。

  ②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  ③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

  5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

  6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。

  7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

  第十章数据的收集、整理与描述

  知识要点

  1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

  2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

  3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

  4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

  5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。

【七年级数学下册知识点总结】相关文章:

七年级下册数学知识点总结10-20

生物下册知识点总结03-01

七年级下册数学教学总结05-21

人教版七年级数学上册知识点总结03-15

苏教版数学中考知识点总结10-25

初中数学知识点总结10-25

七年级下册数学教学总结8篇05-22

七年级下册数学工作总结05-21

初三数学知识点总结12-22