作为一位刚到岗的人民教师,教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,那么应当如何写教学反思呢?以下是小编帮大家整理的八年级数学教学反思,希望能够帮助到大家。
八年级数学教学反思1
今天下午在我任教的一班实施了《函数》这一节内容的教学。一堂40分钟的课下来,原本以为可以轻松搞定的课,结果却问题多多,有很多东西需要自己静下心来思考,现将我实施完本课教学后的思考内容整理如下:
《14.1.2函数》的教学是一堂概念课的教学,我的基本思路还是通过从实际问题出发,得出函数关系式后,引导学生观察、发现、总结,进而归纳得出函数这一概念,讲解时,重点引导学生掌握函数的两个显著特征,即一是存在两个变量,二是当其中一个变量确定为一个数值时,另一个变量会有唯一确定的数值与之对应。通过不断强调“变化与对应”这两个关键点,让学生发现函数的本质属性。引导学生学习了解了函数的概念之后,再通过教材中的例题进行巩固,接着是分了两个层次进行加强训练,最后进行课堂小结。
本课教学的困难之处,我觉得一是如何将抽象性的函数概念清晰明了的讲授给学生,二是教材内容中出现的大量实际问题该如何科学恰当的处理。我的选择是先回顾有关“变量和常量”这两个概念,然后通过之前“14.1.1变量”这一节所提到的前三个问题入手,得出关系式,填写好当其中一个变量确定后所对应的数值(每个问题做了一份表格),完成这三个问题后,让学生来归纳其特征,从而过渡到学习“函数”的概念这一教学环节上来。从实施的情况来看,效果不理想,主要原因是在这三个问题的处理上时间稍显过长,最重要的一点是在引导学生去思考这些问题的特征时,语言不够简练恰当,使得学生在这里的思考陷入困境,课堂氛围陷入僵局。由于自己的引导预设的原因,学生做出了非本人预想的回答,打乱了我的教学思路,致使后面的教学受到了影响。具体情况是这样的,当我提问学生“观察上述问题,每个问题中有几个变量?同一个问题中的变量之间有什么关系?”时,随口说了一句“请同学们观察这三个问题,有何共同点?”在我的引导下,学生说出了两个我想要的答案——一是都存在两个变量,二是当其中一个变量取了一个确定的数值时,另一个变量会有唯一确定的值与之对应,接下来又有学生说出了第三个,那就是这三个问题中都存在常量,这一回答针对课件中我所设计的那三个问题是没有错的,于是我便将其写在了黑板上,但是我们仔细研究初中教材中给出的“函数”定义后会发现,存在常量并非函数关系中必须存在的本质属性,而在课堂中,我并没有跟学生解释清楚这个问题,可能致使部分学生在认识“函数”这一问题上今后还会出现偏差。
事实上,课本教材中的“心电图与人口调查”这两个实际例子,也是函数关系的一种体现,同时也可以作为论述“存在常量,并非函数关系中必须存在的因素”,因为在这两个例子中,一个是讲述心脏产生的生物电的电流与时间这两个变量之间的关系,另一个是年份与人口数这两个变量之间的关系,中间并未提到常量。(当然,对于这两个例子,是否存在常量,我觉得还值得大家进一步思考与讨论,我只是从函数的表达方式上观察得出的)。学习“函数”概念的关键是在“变化与对应”,且是当自变量的值确定时,有唯一确定的函数值与之相对应,我觉得在这里我讲的还不够好,还不够清楚,前面的例子的引入并没有起到我预想的效果,这值得我认真的思考——该如何有效的利用这些实际问题来进行“函数”的概念教学。
在本次教学中,对于“人口调查”这一问题的讲解上也有问题。我原本想让学生观察找到其与之前的问题的共同特征——“存在两个变量”和“对于其中一个变量去确定的值后,另一个变量也有唯一确定的值与之对应”,但事实证明,学生很难找到其与前面三个问题的共性,当我提出让学生观察并发现后,部分学生的思维被
发散了很多,导致思考漫无边际,而又有一些学生思维陷入了困局,不知从何回答。课后,我也思考了一番,不如讲完前三个实际问题后,便给出“函数”的概念,再给出“心电图”和“人口调查”这两个例子,来印证和说明这也是一种函数关系,进而再讲解,函数的三种表示方法——解析法,图像法和列表法。这样的处理会不会效果更好呢?星期五可以再做新的尝试。
在本次教学中,我讲课本97页的探究内容去掉了,课后许多老师提出这个内容不应删掉,我也觉得如此,这个探究内容确实能够很好的去印证“函数”概念中所蕴含的“变化”与“对应”这两个关键点,是对“函数”概念理解的很好的'活动。
在例题的处理上,由于前面的时间安排的不好,使得这道题讲解的也有些匆忙。函数时研究运动变化的重要数学模型,它来源于现实生活又服务于客观实际,所以我明白教材中将实际问题贯穿始终的用意,但是这也无疑给这堂课的教学添加了难度。整体来说学生对于应用题的处理是存在一定困难的,再加上本课又加上了抽象的数学概念,从概念的获得到概念的应用,这个跨度也是有些大的,所以需要教师对于这一过程非常熟悉,非常明确本课的教学目标和重点,采取有效的教学手段,才能引导学生不会在学习中分不清方向,抓不住重点。
课后的分层练习,由于讲到这里课堂剩余的时间已不多了,所以处理的很快,学生完全是被动学习,效果应该也是打了不少折扣。
此外,本课缺少情景引入,教学目标不够清晰,教学语言不精练简介,板书不够有条理,也是本课教学存在的问题。还有在《学习卡》与课件的设计上也存在一些需要改进的地方,在这两天务必要重新设计规划了。
“上好一堂课真不容易,上好每堂课更不容易”,这次教学许多老师提了很好的意见,尤其是黄玲老师,一针见血的指出,尽管我参加过许多大赛并获过不少奖,但是这一两年感觉已经到了一个“瓶颈”,就本课的教学来说,施教者对于概念的特质还抓得不够精准,让听课者感觉有点乱,说明今后还需要加强理论上的学习,需要认真研读教材,扎扎实实的去备课。我觉得说的很对,这也反映出我在平时工作上存在的问题。这些年来,科组的老师们对我的帮助很大,尤其是科组长陈笑联老师和黄玲老师,在这里由衷的表示感谢。对个人而言,虽然参加了东莞市第一期的初中数学教师骨干培训班的培训,但从未将“骨干”跟自己划等号;尽管现在进入了“名师工作室”学习,但从不敢以“名师”自居,我的教学生涯还有很长的一段路要走,在教学教研的路上,我觉得自己还是刚刚入门,还需要不断学习,自己主动的去参加这么多的培训,其实也是想通过培训来鞭策和要求自己,不让自己松懈。没做老师之前,母亲就曾告诫我,做教师这一行是“良心活儿”,要对得起学生,对得起良心。这句话我时刻都记着,我会努力去做的。
八年级数学教学反思2
《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。具体说:
(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;
(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);
(3)能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等。②两个元素:两边或一边一角或两角对应相等。③三个元素:三边或两边和一角或一边和两角或三角对应相等。或者按:①边(一条边或两条边或三条边分别对应相等),②角(一个角或两个角或三个角分别对应相等),③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];
(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的.三条公理和一条定理;
(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。
基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。增强学生的观察、猜想和动手操作能力。
八年级数学教学反思3
经过的一周的课堂教学,每到周四周五的时候,在自己的内心里总有一些关于课堂教学的想法和思考。
课堂改革到了现在,在老师的平常上课中,已经有了一定的课堂教学的模型,很多时候不自然的将学生在课堂中的主题地位显现。在学生的上课过程中,也已经自然而然的具备了小组合作探究的意识。但是,我不得不承认,正是由于这种课堂改革的延续,现在学生的学习给老师的感觉,更多的是学习的浮躁和不踏实,因为学案的题目数量巨大,题目质量不高,使得学生在课上和课下占掉了一定的时间。同时为了更好的将学案课上好,课时进度没有把握好。
我也非常向往我们所要的高效率,合作式的课堂教学,老师的一个问题引出学生积极热烈的讨论,通过生生合作,师生探究共同完成一节课的学习。轻松、愉快、高效、很好的`兼顾中下游学生的学习情绪和状态。我想,只要学校能更大力度的从上到下的贯彻这种课堂教学改革的力度,从管理和服务上让老师能把更多精力的用于课堂教学和改革,减少不必要的时间浪费和做无用功,一定会在不久的明天,创造出我们杨坡中学特有的高效课堂教学模式。
八年级数学教学反思4
“有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。
研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的.应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。
八年级数学教学反思5
讲授《轴对称》的时候,在教学方法方面,为了充分调动学生学习的积极性,使学生主动愉快地学习,采用引导发现、合作探究相结合的教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生动手操作和观察分析,使学生充分地动手、动口、动脑,参与教学全过程.
在教学手段方面,充分利用黑板,演示画图过程供学生观察,体现教师的'示范作用。
在学法方面,围绕本节课所学知识,设置与学生已有知识经验和生活经验密切相关的问题,激发学生学习兴趣、积极思考,引导学生独立学习、自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验,提高解决问题的能力,培养一定的创新意识和实践能力.
在教学过程中,为了达成教学目标,强化重点内容并突破教学中的难点,根据教学目标和学生的具体情况,紧密联系生活实际中的旋转实例,精心设计问题情境,使所有学生既能参与,又有一定的拓展、探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验.
通过本课学习,学生应该能准确掌握轴对称,对称轴和两图形轴对称的概念,经历了动手画图、观察发现、归纳等一系列活动能较好地掌握轴对称的性质,并会运用轴对称的性质作出已知图形关于某直线成轴对称的方法.通过一系列探索活动,学生再次感受数学知识融于生活实际,体验数学学习的快乐。
八年级数学教学反思6
教学前的反思
1、自己或他人以前在执教这一教学内容(或相关内容)时曾遇到过哪些问题?这些问题是采用什么策略和方法解决的?其效果如何?
2、根据自己所教班级学生的实际,学生在学习这一教学内容时,可能会遇到哪些新的问题?针对这些新问题,可采取哪些策略和方法?
教学中的反思
3、学生在学习教学的重点和难点时,出现了哪些意想不到的障碍?你是如何机智地处理这些问题的?
4、教学中师生之间、学生之间出现争议时,你将如何处理?
5、当提问学习能力较弱的学生,该生不能按计划时间回答时,你将如何调整原先的教学设计?
6、学生在课堂上讨论某一问题时,思维异常活跃,如果让学生继续讨论下去就不能完成预定的教学任务,针对这种情况,你将如何进行有效的.调控?
教学后的反思
7、教学目标是否以促进学生的发展为根本宗旨?
8、教学内容是否科学合理?
9、教学方法是否以学生为主体?
10、教学是否体现新课程理念?
八年级数学教学反思7
我平时不上课不认真,数学竟然还到90,为此,我想出了几个办法。1)在做题前,时刻要记得还有个"";2)解答题时,不要急于下笔,要先在草稿纸上列出这道题的主要步骤,然后按照步骤一步步做下来,不忽略每一个细节,尽量把每一道题都答得完整漂亮;3)平时多做一些不一样类型的题,这样就会对大多数题型熟悉,拿到试卷心中就有把握;4)适当做一些计算方面的练习,让自我不在计算方面失分。我想如果我能做到我以上提到的这几眯,我必须能把考试中的失误降到最低。因此,我必须会尽力做到以上几点的。
但我想仅靠以上几点还是不够的,我还就该拥有几点科学应试技巧。于是,我根据我自我的`实际状况想出了几点。第一点:拿到考卷后,应把考卷整体审视一遍,看一看哪些题比较容易,哪些题比较难。第二点:先从简单的题做起,把那些好拿的分数全部拿过来。第三点:如果有选取题不会,乱蒙也要写上一个。因为如果你写了你就有的机会,总比没有机会好。第四点:遇到难题,实在写不出来的话,就过。不要死死地盯着那道题,而忽略了别的题。第五点:考完后,认真地检查,看看自我有没有把题目看错或抄错。
在下一次考试中,我必须会尽自我最大的努力做到最好。
八年级数学教学反思8
本期我担任数学教学工作,在工作中我常有这样的困惑:有些题你不但讲了,而且还是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这就应该引起我的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文我从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二、在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”,在教学中学生解题后我便引导学生进行反思小结:
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3)怎样克服这些错误呢?同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的.提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
八年级数学教学反思9
期中考试刚刚结束,回顾这半个学期来自己的数学教学工作,感觉无论是课堂教学效果还是学生的学习成绩都不容乐观。尤其是在本次期中考试中,成绩下滑较大,同时也暴露出学生运用数学知识特别是几何知识解决问题时所存在的缺陷:基础知识不够扎实,基本性质、定理定义掌握不牢,练习不够,运用知识点十分不熟练,思维缺乏想象能力和创造性。经过对试卷进行了细致的分析,结合平时上课学生的表现与作业,发现自己在教学过程中存在以下几个误区。
一、备课过程中准备不足,没有充分认识到知识点的难度和学生的实际情况。
从本次期中考试成绩来看,数学成绩处在中等及稍偏下的学生成绩下滑较大。回顾自己在教学中所进行的备课工作,以及针对性练习,感觉难度过大,没有估计到中等生的学习能力,无形中给中等生的听课和理解增加了难度,造成其对知识点的理解不够透彻,运用知识的能力下降。通过查阅部分中等生的期中考试试卷,发现中等生在答题的过程中,知识点混淆不清,解题思路混乱,不能抓住问题的关键。
二、对部分成绩较好的学生的监管力度不够,放松了对他们的学习要求。
本次期中考试不仅中等生的成绩下滑,少数平时数成绩较好甚至单元测试可以拿到90分以上(总分100分)的学生考试成绩很差,勉强及格甚至不及格。像陈谦益平时很优秀,而这次只考了89分,究其原因是对该部分学生在课后的学习和练习的过程中,没有过多的去关注,未能及时发现他们存在的问题并给以指正,导致其产生骄傲自满的情绪,学习也不如以往认真,作业也马虎了事,最终成绩出现重大危机。
三、没有抓紧对基础知识和基本技能的训练。
从这次期中考试来看,相当部分学生存在着计算方面的问题,稍微复杂一点的计算错误百出。有部分学生甚至不会找全等三角形对应边、角,常用的全等三角形的'判定方法如“SAS”、“ASA”、“AAS”、“SSS”、“HL”这几个定理都没有掌握好,至于角平分线性质及判定定理和线段垂直平分线性质与判定就更不用说了。相当部分学生分不清平方根与算术平方根的区别与联系,不会进行简单的开方计算。和无理数有关的内容一塌糊涂。
四、要加强与学生交流
交流是一门艺术,而这里的“艺术”是指富有创造性的方式、方法。教师在与学生的交流中,能通过语言技能,将学生的注意力紧紧抓在手里,使学生不但注意接受,而且乐意接受,从而高效率地完成每个教学环节的教学任务,全面提高教学质量。
1、要想很好与学生交流,必须先尊重学生。每一个人都有自尊心,只有呵护他们的自尊心,他们才能敞开心扉与你交流。
2、关注孩子们的情绪变化,特别是大考前后,这一段时间心理最不稳定。如果发现哪一个孩子,情绪有波动,及时进行心理疏导,确保孩子们心理健康。
爱一个学生就等于塑造一个学生,而厌弃一个学生无异于毁掉一个学生。让我们把爱的目光洒向每一个学生,使他们在知识的天地里健康成长。
通过对前半期的分析、总结和反思,下半期的数学教学主要从以上四个方面入手,着力解决前半学期数学教学中存在的误区和不足之处,备课的过程中切实结合学生的实际情况,采取有针对性的补救措施,提高学生的基础知识和基本技能,加强对学生课后学习和练习的监管和督促力度,加强学生分析问题的能力,培养其创新思维能力,进而提高其应用数学知识的能力,全面提高班级的数学成绩,为今后的数学教学打下坚实的基础。同时做好每堂课的课后教学总结,发现问题及时纠正,不留教学死角。
八年级数学教学反思10
一、教学设计思路:
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的'知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
二、教学完成情况:
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
三、满意与不足之处:
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。
四、改进措施:
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
八年级数学教学反思11
《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。但需要改进的地方确是更多的.。在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出。对角线互相平分的几何语言表示还可以是。另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。
总体来说,或许是教师和学生的心理都较紧张,课堂气氛不够活跃,引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学中要多加注意和需要不断改进的。
八年级数学教学反思12
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑)。
1、如何揭示学习目标
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?
数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2。我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的`“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
2、如何选取合适的数学原型
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。
3、如何引领学生经历数学化、形式化的过程
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。
4、如何引用反例
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。
八年级数学教学反思13
本届课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣。本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想。
寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的.在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标。然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法。
最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用。
八年级数学教学反思14
下面是我在教学中的几点体会:
一、教学中的发现
(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的`顺序进行计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:
1、增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
2、增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;
(3)列分式方程错误百出。
针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
二、教学后的反思
通过这节课的教学及课后几位专家的点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。
八年级数学教学反思15
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的`判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
【八年级数学教学反思】相关文章:
八年级数学教学反思06-16
八年级数学教学反思06-18
八年级下数学教学反思03-12
【精选】数学教学反思07-11
数学教学反思06-12
数学教学反思06-24
八年级上册数学教学反思05-29
八年级上册数学教学反思08-05
八年级数学教学反思(精华)07-10
八年级数学下册教学反思03-24