- 相关推荐
作为一位刚到岗的人民教师,教学是重要的任务之一,借助教学反思我们可以拓展自己的教学方式,那么写教学反思需要注意哪些问题呢?以下是小编精心整理的两位数乘两位数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
两位数乘两位数教学反思1
《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。
教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。
教学的难点是解决乘的顺序和第二部分积的书写位置问题。
片段一
师:文具店新购进一批圆珠笔,一盒是24支.请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?
(学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等.)
师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?
(有几个学生在下面嘀咕,算算不就知道了.)
师:(老师马上接过话头)这几位同学说的很好,算算就知道了.下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。
(老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)
师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。
(在老师的鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)
(学生经过15分钟的独立思考后,教师回到讲台。)
师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?
(准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)
通过交流,全班一共发现了近十种解法:
1)24+24+……+24=288(12个24相加)
2)12+12+……+12=288(24个12相加)
3)24×2×6=288
4)12×3×8=288
5)24×3×4=288
6)24×10+24×2=288
7)竖式计算
8)24×20-24×8=288
片段二
师:同学们已经探索出十几种算法,下面我们比较一下这些方法的优缺点。
师生交流后,得出以下几种结论:
1、用加法计算,容易理解,但计算麻烦,容易出错。
2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)
3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。
二、归纳法则。
在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。
三、巩固练习。(略)
[案例反思]
如何搭建“脚手架”?
所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。
在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。
我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。
首先,搭建“脚手架”要引导学生自主提取信息。
随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基.
其次,搭建“脚手架”要蕴含数学思想方法。
“如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。
如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。
两位数乘两位数教学反思2
两位数乘两位数(进位)笔算乘法,是在学生掌握了两位数乘一位数的笔算方法以及两位数乘两位数(不进位)笔算方法的基础上进行教学的。虽然大部分学生在乘法笔算的顺序和数位的对齐方面已经有了一定的基础,但在两位数乘两位数进位笔算计算仍存在较大的困难。所以,我将两位数乘两位数的进位笔算方法定为教学重点,同时也把弄清两位数乘两位数算理定为教学难点。对于中低年级学生来说,计算算理是比较抽象的,加上部分学生没有很好地掌握数位的意义,这样一来要弄清楚算理更是难上加难了。对于本节课,我做了以下几点反思:
一、课堂中节奏太快,没有给足学生时间去思考。在提出问题“你是怎么想的”后,我迫不及待地想让学生来说算理,当然这样一来学生的思维没有跟上,更加给了他们“数学很难学”的错感。我想课堂中应该要给足学生时间与空间,让他们充分地去思考。
二、没有提倡算法优化,不仅仅只是算法多样化。算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的基础。新课标指出:笔算教学不应仅限于竖式计算,应鼓励学生探索和运用不同的方法计算。学生的个性差异是客观存在的,对同一道计算问题,由于学生的生活经验、认知水平和认知风格存在着差异,常常会出现不同的计算方法和解题策略,这正是学生具有的不同个性的体现。在本节课中,我在看到学生只提出了口算方法和把因数拆分成两个一位数后,就马上提出了竖式计算的方法。在学生练习中应该加强算法优化。
三、课堂反馈环节做得不够到位。在练习中应让学生上来板演,充分利用课堂生成资源,解决“进位时没有数位对齐”的问题。从课后的练习中看得出这节课的反馈没有做到位,也明白了自己这节课失败在哪儿。
今后,我会努力改进自己的教学方法,促进学生学习方式的改变。要努力钻研教材,弄清学生的易错点,从而更好地突破教学难点。
两位数乘两位数教学反思3
两位数乘两位数的笔算,是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。
设计原则之一:计算与应用结合,体验计算是有用。
因此整堂课的教学流程是创设情境提出问题探索尝试寻找方法巩固方法学以致用。让学生在解决实际问题中探讨计算方法,使学生深刻理解为什么要计算,切实体会计算的意义和作用。
设计原则之二:主动探索计算方法,并进行优化,渗透化归的数学思想。
解决买24本树需要多少元时,学生寻找了很多方法。有的用了拆数,有的用了连乘,有的用了课外学习的竖式。到底哪些方法是通用的?哪些方法是有局限性的?教师应当肯定学生正确的想法,更应当引导学生进行合理的优化,寻找解决问题的一般方法。
设计原则之三:结合具体情境理解并掌握两位数乘两位数的计算方法。
学生掌握两位数乘两位数笔算方法的关键是:
①掌握乘的顺序;
②理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。
结合具体情境,既能沟通横式与竖式间的联系,又能有助于学生理解乘的顺序(每一步的由来),对位的问题。脱离具体情境说说怎么计算,从具体到抽象,帮助学生更好的掌握计算方法。
两位数乘两位数教学反思4
数学练习课在巩固知识、熟练技能的同时,对提高解决问题的能力、培养良好的情感与态度等方面同样起着重要的作用。那么,在新课程理念下如何设计练习课?如何激活学生的思维?提起数学计算课,大部分老师的脑海中出现的模式总是基础练习、综合练习、提高练习。老师总是想尽一切办法,讲的是口干舌燥,而孩子们总是懒洋洋的,兴趣不浓,错误率还较高,怎样改变这种局面,让孩子们从要我学变成我要学,提高计算准确率,是我一直思考的问题。
现在的孩子都很聪明,但是由于电子信息时代,孩子们心态都较浮躁,不能静下心来,认真思考,认真观察,每一次考试或是做作业,都是题都没有认真读完,根本就没有思考,就急着下笔,做完也不检查,成绩可想而知。所以培养孩子们学会观察,让孩子们静下心来思考,是我们现在的数学老师首先要做的。因此,我设计了本节课,目的不是非要教会孩子们什么具体的知识,而是要培养一种能力,让孩子们拿到题后,要先观察、在认真思考、再准确计算,养成一种好习惯,从而提高计算准确率,继而提高数学成绩。
本节课以探究两位数乘两位数的对称算式的积的规律为线索,让孩子们仔细观察,认真思考,通过计算,得出新的结论。既复习了旧知识,又培养了孩子们良好的学习习惯,一举多得,达到了多个教学目标。
一、引人入胜的“起调”
(出示对称图形的一半,让学生补充完整,然后介绍算式也可以对称)
【设计目的:课始,利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】
二、扣人心弦的“主旋律”
进行两位数乘两位数的估算、计算、巧算的巩固练习。
在探究积是否相等时,首先让孩子估算,看成整十数估、都估小,当多种估算方法得出不同的结论时,自然而然进行了笔算的练习。此时,两位数乘两位数的笔算因为不是老师硬性的简单要求,而是学生内心自然产生的解决问题的需要,因此,学生计算的很主动、很积极,很认真。这时老师不经意间的一句评价:“看到同学们每一个人都在认真的计算,老师非常感动,是啊,只有准确的计算才能得出正确的结论。”学习习惯的养成“润物细无声”。
在学生计算得出两位数乘两位数的对称算式乘积相等时,老师又引导学生质疑:真的是这样吗?老师又举了一个例子,学生主动计算。“真的是这样吗?”学生自己举例进行笔算、估算、巧算。
【设计目的:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】
三、余音绕梁的“终曲”
师:对于这个结论,你感到怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……
【设计目的:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】
整堂课,老师以两位数乘法的练习为引子,引领学生在充分体会对称之美的同时,经历了一次体验深刻的探索之旅。学生在学习过程中,不是为了练习而练习,他们在享受着过程之趣的同时,感受到了数学思想之神奇、数学学习之乐趣,增长了智慧。
两位数乘两位数教学反思5
关注要点 把握关键
两位数乘两位数的笔算乘法(不进位)是多位数乘法的基础,是笔算乘法的通法,是在多位数乘一位数的笔算基础上进行教学的。因为不需要进位,就一个例题,重点让学生明白乘的顺序和乘得的积书写位置两个问题就可以了。这部分内容看起来简单,可是对于三年级的学生而言,却是很难理解的。
在备课时主要关注了以下几点:
1.学生的起点。
学习这部分内容,学生应该具备的必要技能有两位数乘一位数的笔算和两位数乘整十数的口算。在教学中要充分关注到这一起点,让学生能够在课伊始就能清楚地知道两位数乘一位数的笔算过程及方法,特别是通过“24×2”用竖式计算的过程,由学生自己说出需注意的问题,然后把这三条贴在黑板上,以求给学生留下深刻的、完整的笔算思路。为下面类推两位数乘两位数笔算方法也提供了方法基础。通过课堂的实际效果看,对学生的影响是比较大的。
2.转化思想的渗透。
从两位数乘整十数的口算练习开始,就让学生感受到是把它们转化成两位数乘一位数的计算,设计时想从这个地方开始就让转化在课堂中发挥作用,让孩子能够对转化思想有一个切身的体验;当把两位数乘两位数的例题用口算做出来时,再让学生感受到没学过的内容可以转化为学过的口算来解决;最后探究出用竖式计算时,总结算法,让学生再一次感受到原来笔算两位数乘两位数时,就是用第二个因数每个数位上的数去乘第一个因数,其实就是转化成了两次两位数乘一位数的笔算。设想的过程是这样一个环节接一个环节,让孩子从知道转化这个词,慢慢明白原来就是这么回事,简单易懂,不用非得描述出“转化”是什么,但是心中已经明白了“转化”是为了干什么。
3.习题的设计。
像这样的计算课,除了让学生明白了算理,知道了算法,更多的功夫应该放在练习上,只有在大量的练习中,学生才能逐渐掌握计算的技能和技巧。因为是计算,如果只是一种形式的练习,很容易让学生感到枯燥乏味没有兴趣。所以在本课的习题设计上,采用了多种形式结合,体现由扶到放的层次性。
第一道题就体现了三个层次,第一个层次对着画有方框的竖式填写计算的结果,然后再填写后面的横式结果,这是给学生固定出积的位置再填写,在填横式结果的过程中巩固对算理的理解;第二个层次给写好了竖式,直接计算;第三个层次只给横式,自己写竖式计算。
第二道题,依然还是列竖式计算,但是要求同桌为一组,每人完成两个,然后互相检查,反馈后全部做对了,每人都可以给自己画一枚喜欢的标志,这样捆绑评价,可以调动起练习的积极性,忽略掉做计算题的枯燥感。
第三道题,给出算式和竖式中关键位置的积,让学生根据竖式去判断对应算式,这道题以游戏的形式出现,里面蕴含着对两位数乘两位数算法的理解,只要理解了如何去算,就可以轻易根据关键的几个数找到对应的算式。想在趣味性十足的练习中加深对算理和算法的理解。
在课堂上,主要把握了以下几个关键:
1.知识基础。
两位数乘两位数的笔算是在乘一位数的基础上进行的,所以让学生及时认真回顾两位数乘一位数的笔算方法很重要,所以在教学中踏实进行复习。
2、乘的顺序。
这是两位数乘两位数笔算的关键,让学生深刻理解两位数乘的顺序很重要。所以在全班交流的环节不厌其烦地让学生说自己怎样计算的过程,就成了重头戏。可惜在这个过程中,课堂上我处理地并不好。对学生的引领不够科学有序,问题缺乏清晰的条理性,所以没能达到我预想的效果。
3.积的书写位置。
在计算第一层积时属于原来的知识基础,学生不会有问题。当计算第二层积时,学生就遇到了困难,解决的关键是让学生理解如何用第二个因数十位上的数去乘的过程,把握了这一点,学生自然就明白结果是几个十就该写在十位上。这一点容易理解但需要强化训练才能熟练掌握,所以在探究交流完后的师生梳理时还要进行“重笔涂墨”,我启动了一个问题“像说用个位上的2乘24那样,说说用1乘24的过程好吗?”这样就给学生一个清晰的认识“用24乘十位上的1,过程跟用24乘个位上的2笔算顺序和方法完全一样”,只是跟个位上的4乘后的积应该写在十位上,其他的道理都相同。不知是因为强化了这一点还是学生感悟能力强,从最后做的练习上看,正确率比我想像的要高。
我的感受:
忐忑。
在接到任务时因为是作为骨干教师,同联小教师同上这节课,很怕自己会有愧于这“骨干引领”的任务,希望自己能够呈现给大家一堂有自己风格的课,最好是能有所创新。但是这样的课型平时评优课很少有人触及,因为它不好创新,只能踏踏实实地去上,花哨不得。于是忐忑不安地进入了备课、思考的过程。时间很短,从接到正式通知到最后一共8天的时间,其中有周六、周日两天学校组织去蒙山进行了拓展训练。备课、研讨、修改、试讲,每天晚上都对着教参、教材和教学设计就这么静静地坐在电脑旁,即使什么都不干,也哪都不去,就这么静静地坐着,大脑却一刻不停地思考:如何才能让整个过程显得更清晰、更有实效呢?忐忑不安中,最后决定既然创不了什么新,那就把它上踏实,这才能体现课的高效和内涵。
迷茫。
课前的复习环节,进行了好几次改动。最初设计了一组口算训练,二是笔算训练。作为这节课前的热身,但是在做完这些题的时候我还想抽出要点分别总结概况它们的算法,以便为后来的学习奠定基础,于是就显得头大了,修改。
课堂上学生的表现很出乎我的意料,本以为用口算的方式分解成三步是很自然的事情,但是课堂上孩子们并不是这样的思维,他们多是上来就用笔算,不管对不对全是列竖式的形式。于是就把情境进行了分解,改成了台阶式。利用情境第一步先解决笔算的基础问题,第二步口算,但即便这样,经过调查,学生使用口算来解决的依然不多,利用竖式的很多,但多数都不对,其中有用竖式的样子,但结果其实是口算出来的却说不出笔算的过程。当遇到这样情况的时候,让学生表达说不出来,学生自己又提不出什么问题,只能由老师来讲,对此我真是迷茫了一阵。还是能力不够,不能准确把握课堂,处理问题的随机性不强,这些应该都源于自身业务水平还不高,还有待更进一步地去学习、去实践,让自己的能力再提高,争取做一个真正优秀的数学老师。
遗憾。
那天上完课,我觉得特别遗憾。
在学生汇报交流环节,我的问题引领不科学,其实应该清晰地以两个问题呈现:分了几步算出来结果的?说出每一步是怎么算出来的。当学生有240的0省略写法时,提问:怎么不写0你也认为是240?这样就可以了,至于24是怎么按照乘的顺序得出来的,可以放在师生梳理时强化,这样效果可能比我当时的处理要好。
在处理学生错例上,学生已经明确知道算法后,应该给一个纠错的机会,不仅是对展台上展示的错题,开始尝试的错误都要有机会进行修正,这个环节漏掉了很遗憾。
在对估算结果的使用,准确结果算完后,没有及时回头看,使估算的结果仅停留在开头的分析上,这里需要一个验证分析的过程,如果能有,会使课堂更有数学的理性美。
总之,还需要多学习、多锻炼,人如果不逼自己,真不知道自己能干什么。这样的课原来我从没想过可以上公开课,多数数学老师也不愿意涉足这样的课题,一个字“难”。但是经过这番尝试,我竟然有点喜欢这样的课了,这种课可以不上的华丽,但是可以上得很有味道,至少以后看到这样的课型,我也可以对自己有信心了,因为我经历了整个思考的过程……
两位数乘两位数教学反思6
计算教学是一个比较枯燥无味的内容,为了提高学生们计算的兴趣。我根据教材的编写目的,先引导学生估算。由于刚学过估算,放手让学生们进行估算,然后汇报估算的结果分别是200、240。这样我认为能帮助学生巩固估算的方法。同时也为笔算作了铺垫。
这时我就问学生24×12准确值是多少呢?你们试着算一算,用你自己的方法计算。学生们开始计算时,我就把不同的计算方法让学生板书在黑板上:王召鑫:用竖式计算。毕左雪:24×10=240,, 24×2=48,240+48=288。李文彬:240+48=288。他们三个写完后,底下就有同学就说李文彬和毕左雪的一样,我说:“同学们都用自己的方法算出结果了,我们一起来听听这三位学生是怎么想的。”李文彬说:“我和毕左雪想的不一样,我是20×12=240, 4×12=48,240+48=288。”他一说完大家就说写的不清楚,不能让人一眼看明白,讨论后觉得就种方法只给5分。毕左雪虽然方法和李文彬一样,却写得比较清楚,但是这种写法比较麻烦,不喜欢用这种方法计算。这时,我在小结这种方法时表扬了这位学生爱动脑,这为以后的简便计算打下了很好的基础。最后同学们给毕左雪打了8分。
最后由王召鑫介绍用竖式计算的方法,这一下满足大多数同学的味口,都觉得这样计算简单。于是我们就来研究用竖式计算24×12,我发现学生们都进入了学习状态,最后教学效果也很好。
两位数乘两位数教学反思7
两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。
对整堂课的教学顺序初步打算是,创设一个具体的情境激发学生学习的兴趣,围绕要解决的中心问题展开自主探索,在教学中教师心引领者的角色带领学生理清:1、掌握乘的顺序。2、理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。在实际教学时,估计有相当一部分学生能算出结果是多少,所以本课基本思路是从“认知——冲突”到“新知——尝试”经过“交流——理解”达到“巩固——掌握”,同时也提倡算法多样化。
实际教学中,在“组织全班讨论、交流各类方法,提出自己的疑问一起解决”这一环节上,教师处理上有不当之处。学生出现多种计算方法,有拆因数法,有正确的坚式计算,也有错误的坚式计算,组织讨论时教师问了这样一个问题:“观察黑板上同学的算式,你有什么意见或不同看法可以提出来。”于是学生就从错误的坚式入手,说明它的错误点,导致再去观察其他坚式时出现了重复现象,破坏了层次感。其实在这一环节的处理上,教师应该充分发挥引导者的作用,带领学生从横式即拆因数法出发逐一去分析,将错误的方法放在最后处理,这样层次感更强些,也符合学生认知的特点。
两位数乘两位数教学反思8
两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本课的重点:掌握两位数乘两位数的笔算算理。关键:在于学生能掌握好乘的顺序以及两个积的数位。
在课堂上我让学生观察情景图上的灯柱入手,再现了学生熟悉的情景,激发了学生的学习兴趣,同时,把计算设置在学生熟悉的具体情景之中,激活了学生原有的知识与经验,使学生愿意去主动探索知识。
由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。只有这样才能真正实现练习的优化。努力做到编排练习深浅适宜,分量适当,搭配合理,使学生在自己临近的思维发展区得到充分发展。
在设计本堂课时都比较注重练习的强度和层次性,考虑到低年级学生的年龄特点,我在作业设计方面重新设计了一份星级挑战题,分三个层次。由于这堂课的重难点是计算顺序,为突破这一难点,巩固算理,第一个星级作业我设计了填空练习,以帮助学生进一步巩固算法,特别是对学习较弱的学生。二星级作业是请学生写出每个笔算乘法中两个积分别表示什么,进一步理解和掌握算理,为以后的多位数乘法打下基础。三星级作业设计意图主要是引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识。
两位数乘两位数教学反思9
教学目标:
1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化;
2、感受“借助旧知识,解决新问题”的策略意识。
3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。
教学重点:理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。
教学难点:理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。
教学过程预设:
一 、创设情境,提出问题
听说小朋友这几天在学乘法,先来考考你们
1、先后出示12×3 12×30
师:12×3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的
乘法意义吗?(乘法意义)
师:那12×30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?
2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。
3、师:李老师来自镇小,在算我们学校总人数的时候遇到了这样一个问题
临城小学平均每班有31人,那全校12个班有几人?
(1)读题
(2)怎样列式?31×12
(3)这是几位数乘几位数?(两位数乘两位数)它的乘法意义你知道吗?那么谁能说说,31×12它的结果大约是多少?你是怎么估计的
(4)我知道了镇小大概的人数,那到底准确的有多少人呢?大家还没告诉老师呀,要计算这道题,我们以前学过吗?遇到新问题了怎么办?能不能把它变成我们已经学过的知识?
二、探索尝试,寻找方法
1、自己试着把这题变成我们学过的旧知识,在自己的练习本上试试。
2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)
3、同桌交流整理。
师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。
3、全班汇报,汇总解答策略。
师:我发现刚才在讨论的时候大家学习习惯特别好,学习效果一定很好。谁想出了一种方法?有两种的吗?还有没有更多的'?(把学生的方法写到黑板上来,并请学生来介绍)这是谁写的,请你来说说?
可能会出现:
第一种方法:31×10=310 31×2=62 310+62=372
师:为什么这么列,这是什么意思?(31×12没学过,但我们可以转化成我们学过的知识,31×12表示12个31相加,可以把它看成10个31与2个31相加)你们明白了?
或出现12×30=360 12×1=12 360+12=372
师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)
师:为什么要拆呀?
师:看来大家很有自己的想法,想到把新知识转化成旧知识来解决。
第二种方法:31×4×3 31×2×6
那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。
[1][2][3]下一页
第三种方法:
1、他是用什么方法做的?用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)
若学生没出现竖式的形式
师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)
2、 62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数
3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系
起来)
31
× 12
———
62
310
372
4、若学生还有其他不同的算式,
31
× 2
———
62
31
× 10
310
62
+ 310
372
(1) 你为什么这么做?看来大家很有自己的想法。
(2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。
4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)
5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。
6、现在我们能知道镇小有多少学生吗?(板书完整横式)观察竖式,填一填2个班有( )人 10个班有( )人 12个班有( )人
23
× 13
———
69
230
299
7、尝试用竖式练习23×13。(学生再次尝试计算)有困难的同学可以模仿上面一题也可以求助于你的同桌
(1)谁愿意把你的解法展示给大家看(实物投影)并边介绍
你的想法
(2)你能看明白这个算式的每一步是怎么来的,表示什么意
思吗?同桌互相说一说
有什么地方不懂的?想问大家的。(实物投影)
8、揭示课题
师:这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)今天我们用到了哪些旧知识?现在你能说说应该怎样笔算两位数乘两位数吗?
师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。
23
× 13
———
69
41
× 21 230
299
9、理解个位“0”不写的意思
31
× 12
———
62
310
372
1)观察这三个竖式,跟以前两位数乘一位数的笔算有什么地方不同?为什么会出现“两层楼”的情况?(因为乘了两次,第一次是第二个因数的个位去乘第一个因数,第二次是第二个因数的十位去乘第一个因数)
(2)除了要乘两次外,还有什么共同的地方吗?(第二次乘得的积的末尾都是“0”)为什么末尾都有“0”?那这个“0”不写可以吗?如果横式中不写可以吗?为什么竖式中可以而横式中却不可以?(竖式中有数位)“0”省略会不会影响计算结果?但要注意什么?因此我们通常把个位的 “0”省略不写。
(3)其实个位不写“0”还有一个更大的作用,(观察板书)只要算第二个因数十位的时候,跟十位对齐就行了,这样两位数乘整十数就变成了两位数乘一位数。但有一点算得的积必须与哪位对齐?(十位)
(4)省略“0”以后要注意什么?
三、巩固方法,推广应用
1、现在我们用这种形式笔算完成34×12 41×21
(1)做之前有什么要提醒自己和大家的吗?
(2)(实物投影)学生笔算并汇报
(3)现在同桌互相说说两位数乘两位数的笔算应该怎么算?
2、师:在我们生活中用没有用到过“两位数乘两位数”的例子?(一学生举例可请其他学生笔算完成)
3、师:老师也来举个例子并笔算。出示:
一套12本,每本24元。一共要付多少元?
4、帮老师解决一个问题
出示:
⑴61个小朋友去看电影,买票一共需要多少钱? (学生认为还少了每张票的价钱)
师:电影院售票窗口有这样一个告示 :成人票每张50元 儿童票每张24元
⑵学生笔算
怎样列式?为什么要与24相乘而不是50?
⑶多媒体对照
61
× 24
———
244
122
1464
⑷ 1张票要( )元 60张票要( )元 61张票要( )元
5、 11×11= 12×11= 13×11=
14×11= 15×11= 16×11=
师:要掌握两位数乘两位数的笔算,必须进行大量练习。现在我报题,你们笔算。
(教师随时报得数)我已经好了,你们呢?
师:很奇怪是吧,是不是老师把这些得数全背出来了?其实这里就有数学秘密在,有兴趣的话下课可以去找找
机动:出示图片《脑筋急转弯》每本16元 《小博士观察手册》每本24元
三(2)班小朋友准备700元钱,想每人买一本相同的书,应该买哪种书?
四、课堂小结
师:今天这节数学课你有什么收获?你是怎样学习的?
师:今天我很高兴,感觉真好!这种感觉是大家给我的,所以我要特别谢谢你们,以后有机会咱们再在一起上课,好吗?
反思:
首先,我想谈谈对教材的理解。这部分的学习内容是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,包括两位数乘两位数笔算的过程都仅仅围绕乘法的意义来展开;第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,主要是能解决这几个问题,第二个部分积的末尾“0”能不能省?会不会影响计算结果?省“0”后要注意什么?
由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。只有这样才能真正实现练习的优化。因此在探索检验过程中我一共安排了4道题:31×12 23×13 41×21 34×12 前两题主要是为理解算理服务的,后两题是为了巩固部分积的对位问题。计算是枯燥的,但也是有用的,引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识,从而从“有用性”的外在角度刺激学生的主观能动性,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法,使今后学生面对没出现过的题目、类型或其他生活中的问题,不再惊慌不已、束手无措也是我本节课要传达给学生的:原来新问题也不可怕,也只不过是旧知识的重新建构。
在教学的过程中我也发现了自己的许多不足,特别是作为一名教师课堂智慧的缺少,如课堂提问的策略问题,面对学生的突发问题,不知道怎样去引导。在今天部分积“0”问题的处理上就花费了大量时间,并且出现了很多重复教学的情况。我想了有了失败,才会去找原因,才会去思索,才会不断去实践,这样在实践反思中不段磨练自己,锻炼自己。
两位数乘两位数教学反思10
两位数乘两位数的笔算是第四单元的教学重点。这部分内容是在学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十),并且掌握了多位数乘一位数的计算方法的基础上进行教学的。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的乘数是更多位数的乘法问题,奠定了基础。两位数乘两位数,是在学生学习了笔算多位数乘一位数的基础上进行教学的。本单元的笔算乘法分两个层次编排,先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。接着,编排进位的,让学生经历两位数乘两位数需要进位的笔算过程,帮助学生掌握笔算乘法的方法。
教学第一课时是不进位的,课堂上我结合例题引导学生去理解算理。当时的例题是没套书有14本,老师买了12套,一共买了多少本?当时这道题是先用口算方法想,先求10套多少本,用14×10=140(本),在求2套多少本,用14×2=28(本),然后140+28=168(本),学生对口算方法都能明白,所以这道题改成竖式时,学生对于算理都能明白,没有疑问,只是有个别学生习惯写上竖式中140的那个0,这个慢慢可以改掉。有了一定的情景辅助学生理解算理上略微有些吃力。课上再通过纯竖式计算,明确先算什么,再算什么,而且一开始我要求学生写清楚你每一步是谁和谁相乘得来的,学生能写清楚,必然是能理解的。练习的过程中适时请学生上台板演,再结合错题进行分析,加深理解,通过两课时的教学发现针对不进位的都能很好的掌握。
两位数乘两位数的笔算乘法,必须让学生明白算理。再通过大量的练习题让学生巩固,学生才能彻底学会。
两位数乘两位数教学反思11
两位数乘两位数不进位笔算乘法是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的教学重点。十位部分积的对位问题,是本节课的一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,都仅仅围绕乘法的意义来展开。20根灯柱,每根灯柱上有12盏灯,一共有多少盏灯?学生很快分析并解答了出来:20个12是多少?即24个十。
第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点。在前面口算的基础上,我又提出如果是23根灯柱呢?学生很快说出求23个十是多少?有的说前面的20个12再加3个12,师顺势引导先用竖式计算20×12=,再用竖式计算一下3×12=,学生算出后,再让学生尝试用竖式计算23×12=,师巡视辅导,然后指名板演不同计算方法,让学生根据题意观察、比较、不同算法,辨析、交流分辨对错。因为有了前面的铺垫,学生掌握起来容易多了,能够理解1个十乘3得到3个十,故3应照齐十位,其它依此类推。效果良好。
第三个层次,联系实际,强化练习
这是一堂计算课,学生要从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。由于练习是一种有目的、有步骤、有指导的教学活动。所以教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题,计算是枯燥的,但也是有用的,因此引导学生能应用知识解决生活里相关的实际问题,既练习了所学知识,又体会数学的作用,逐步树立应用数学的意识,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法。
在教学的过程中我也发现了自己的不足,如课堂提问的策略问题,面对学生的突发问题,有时不知道怎样去引导。出现了一些重复教学的情况,如:对学生估计过低,学生已经表达清楚地内容,总要自己再重述一遍。
还有些孩子在计算的过程中,容易一部分按乘法计算,另一部分按加法计算;也有一些孩子把个位与第一个因数相乘的积,十位与第一个因数相乘的积,应该是相加,而写为相乘。计算不熟练。在以后的学习中要强化训练。
两位数乘两位数教学反思12
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级下册P65两位数乘两位数(进位)。
二、教学准备
多媒体课件、学习评价卡
三、教学目标与策略选择
在两位数乘两位数(不进位)计算中,学生已经理解了笔算的算理,知道乘的顺序及积的书写位置,因此,本节课主要利用学生已有的认知经验进行迁移,让学生自主建构两位数乘两位数(进位)的计算过程。在认真分析教材,深入了解学生的实际认知水平后,我将本节课的教学目标定位如下:
⑴结合讲成语故事这一富有趣味性的情境,体会两位数乘两位数(进位)的计算是伴随着解决问题而产生的;
⑵运用已有经验对问题情境进行探索,得出自己计算两位数乘两位数(进位)的方法,通过与同伴的交流,体验计算方法的多样化,并通过比较,完善自己的方法;
⑶经历两位数乘两位数(进位)的计算过程,掌握笔算乘法的方法;
⑷在故事情节中渗透德育,让学生懂得做任何事情都要持之以恒、专心致志。
由“好的服装=好的布料+好的式样+好的工艺”联想到“好的教学效果=好的教材内容+好的呈现形式+好的教学方法”,在本节课的设计中,我尝试从以下几个方面进行探索:
1、创造自己的“吸引子”,先声夺人。孩子是听故事长大的。本节课我由一个源于围棋的成语故事引入,巧妙地将要解决的数学问题融于其中,引发学生愉快、主动地去探究它。
2、经历发现知识的过程。授人以鱼不如授之以渔场,课堂上我给学生提供了充分积极思考、合作交流的渔场,让他们在交流中不断地反思自我、完善自我。
3、注重过程评价,使学生在学习数学的过程中通过正确的评价,不断调整自我。纸上得来终觉浅,绝知此事要躬行,心中悟出始知深。本节课结束时,我给每个学生发一张评价卡,让学生简单反思自己本节课中所学的知识和情感体验,树立学好数学的信心。
4、教学流程设计及意图
教 学 流 程 设 计 意 图
一、引入
1、(出示卡片)专心致志
师:大家知道成语“专心致志”是什么意思吗?关于“专心致志”这则成语的来历还有一个小故事呢!
2、(电脑呈现下围棋画面)教师讲成语故事——专心致志。
师:大约战国初期,有位名叫弈秋的人特别喜欢下围棋。由于棋术高明,当时有很多家长把自己的孩子送去跟他学棋。其中有两个孩子特别聪明,一个六岁,已经会计算棋盘的总交叉点数,听老师讲棋时注意力非常集中,秋老师给他取名叫弈实;另一个孩子八岁,志向远大,决心要成为象秋老师一样的“大国手”,秋老师给他取名叫弈虚。开始讲课时,实和虚都能够认真地听讲,掌握了围棋的基本知识,学会了下棋的基本着法。一段时间后,弈虚因为水平比弈实高就觉得自己很了不起,小尾巴翘了起来,听讲的时候不用心,心里想着会飞来鸿鹄,自己可以拿弓箭把它射下来。不久,弈实的水平大大地超过了弈虚。
师:同学们,听完这个故事,你有什么想对大家说的吗?
生:下围棋时要专心,要不然就学不到真本领。
师:是啊,这个故事告诉我们干任何事情都要持之以恒、专心致志。
3、提出问题
师:同学们,弈实六岁时就已经会计算棋盘的总交叉点数,
那大家会计算吗?
(电脑呈现棋盘图,使学生了解到:围棋的棋盘面由纵横19道线交叉而成。)
棋盘上一共有多少个交叉点?
请学生说一说用什么方法解决这个问题,从而列出算式:
19×19
4、猜一猜:
⑴学生先猜一猜大约有多少个交叉点,并说一说你是怎样猜测的?
生:因为19≈20 20×20=400 所以大约有400个。
⑵想一想有什么方法能说明你猜测的数较正确?学生说出需要计算19×19=?
二、展开
1、独立思考,尝试解决问题
师:独立思考2分钟,你能想出几种方法计算19×19=?
2、梳理思路,小组合作交流
师:刚才很多同学不止用一种方法计算出了结果,接下来,请把你的想法和小组同学交流一下,在交流中有两个要求:⑴请你注意听小组内每位同学的意见、方法;⑵小组长每人发一张活动记录卡,请你边听边记下你们小组的活动情况。下面开始交流。
3、整理成果,全班汇报
⑴各小组长派代表将自己组的研究成果写在黑板上。
⑵小组代表说说他们的想法,其他小组可以补充。
①我们组的方法是:19×10=190 19×9=171 190﹢171=361
②19+19+…+19=361(19个19相加)
③我们组是把19×19看成20×19,20×19=380,再从380中减去19,380-19=361
④列竖式: 1 9
×1 9
1 7 1
1 9
3 6 1
⑤我们组也是用竖式计算,但结果不同。
1 9
×1 9
9 1
1 9
2 7 1
(揭示矛盾,突破“进位”这一教学难点。)
4、反思各种计算方法。
⑴教师提问:还有不同算法吗?那我们先来看这两个竖式计算:大家觉得他们的方法对吗?你对他们的方法有什么疑问吗?
①学生当“小记者”对用竖式计算组的同学进行现场采访,重点讲清“进位8”。
②师:同学们,“智慧宝宝”刚才也听到了大家精彩的发言,我了奖励大家,下面他要给大家讲个故事,想听吗?(电脑随录音逐一动态显示画面)
附:录音内容
数字妈妈有一对非常可爱的双包胎姐妹。有一天,数字姐姐19来到草地上,看到美丽的大自然,不由得坐下来欣赏起来,这时,数字妹妹19也来到这里,也被这景色吸引住了,她想坐下来和姐姐一起欣赏,可是究竟坐哪儿呢?姐姐看出了她的心思,就提醒她说:“我的1是十位,9是个位。”妹妹高兴地说:“噢,我知道了,我们应相同数位对齐。”突然,9和9说话了,“对不起,我们坐不下了。我们相乘满十了,要向前进8。”她们的前一位友好地收下了各自的新朋友。
学生主动学习,肯定来自于内部需求;如果没有这个需求,学生不会无缘无故地进行主体参与。因此,课堂伊始,我先创设讲成语故事这一情境吸引学生,然后从故事中引出需要解决的问题,使自主探究变成学生的一种需求。这样,在短时间内就将学生的注意引内容,让他全身心地走进数学的“门槛”。
学生间出现了不同的解题策略,在独立思考到达一定的程度时,教师教给学生必需的合作技能,接着,小组内每一个同学讲述了自己的解题方法,并对其他同学的解法充分发表自己的看法。通过这个过程,培养学生数学交流的能力,体验算法多样化,并在交流中学会倾听,学会换位思
学生当“小记者”采访用竖式计算的小组,向他们提出自己还不清楚的问题,这样就把单向的言说,变成了多向的对话。在交流中,学生不仅理解了算理,也解决“进位”这个教学难点。
“数字姐妹赏春”这一环节的设计,把数字拟人化,更拉近了学生与数学知识的距离,他们在静心聆听故事中小数字对话的同时,使知识进一步得到了巩固,而且不容易忘却。
两位数乘两位数(进位)笔算乘法教学反思、本节课是教学小学数学三年级下册课本65页例题2的笔算乘法,重点讲解19乘19的竖式,让学生掌握两位数乘两位数的笔算乘法的方法,进位的乘法计算格式。
从本节课看学生参与积极,学习的兴趣较浓。由于学生在二年级时学习了多位数乘以位数,本学期前一节课学习的两位数乘两位数不进位乘法,有了这个基础。因此,本节课我就放手让学生自己去尝试算一算,说一说,想通过让学生动脑思考、计算归纳两位数乘两位数的计算方法。在让学生计算“19×19”时,我是有意识的安排三个学生到黑板算(典型算法),让学生观察讨论,找到正确的计算方法,这样就突破了“进位”这一教学难点。
教学完这个例题后,我出了3题填一填,分层练习,学生填完后并说出计算的方法,目的让学生在计算的过程中去感悟,归纳出两位数乘两位数的笔算方法。学生都能填得出,但从学生的课后作业看,结果了现有部分学生对笔算方法不熟,尤其是在做第二层计算时就乱写了,例如:
4 5 6 3
× 3 4 × 5 2
———— —————
1 8 0 1 2 6
2 7 3 5
—————— —————
4 5 0 4 7 6
第一题学生当乘到十位上的数时,却是用第一个因数的个位加上进位的数2得7,再用5-3得2。
第二题是用十位上的数和个位相乘后,再用进位的数和个位相乘。这些学生为什么会出现这样的错误,我真不明白。
课后对这堂课进行反思,我想如果在讲完例1后,再叫几名学习没那么好的同学讲述一下笔算顺序,然后出一组改错题组织学生集体讨论,总结出笔算方法,让学生在讨论、口述的过程中对笔算乘法的算理有更清楚的认识,从而掌握笔算方法。学生在巩固训练中失误可能会更少,教学效果可能会更好。
两位数乘两位数教学反思13
上学期学生学习了两位数乘一位数的估算,已经掌握了估算的基本方法,本节课的估算教学又就是在学生已经基本掌握了估算的方法和学习了两位数乘两位数的笔算的基础上进行的。学好本节课内容,能为今后学习多位数除法估算以及除数是两位数的除法计算做好知识上的准备。《数学课程标准》也指出,估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,对学生拥有良好的数感具有重要的价值。而例题在落实《数学课程标准》的同时还旨在引导学生探索两位数乘两位数的不同的估算方法,让学生进一步体会两位数乘两位数的估算技巧。
本节课最突出的特点就是通过小组合作学习模式,让学通过自主合作探究掌握估算的不同方法,在落实课标的和教学重难点的同时,使学生体会算法多样化,并在掌握这些算法的同时能够掌握估算的技巧,即结合具体的题目内容选择最佳算法。
小组合作学习模式本学期已在我校全面铺开,经过开学以来这一个多月时间的试行,学生对这种学习模式已基本适应,并且很喜欢这种学习模式。本节课依然采用这样的教学模式。在这种学习模式下,学生表达能力和表达的欲望增强了,学习能力提高了。本课时共设计了四个预习题目:
问题1:从图中你得到了哪些数学信息?
问题2:说说你是怎样进行估算的?有几种算法?
问题3:如果有多种算法,比一比哪种更接近准确值?为什么?
问题4:在这几种算法中,哪种更好,为什么?
在四个问题中前两个问题学生根据已有的知识经验都能够解决,而第三、四两个问题班中几位学习能力较强的学生能够解决。在教学中我又把这四个问题分为两组,让学生分别进行讨论展示。在第一、二两个问题交流中组内的学生均能畅所欲言,即使是那些学习能力较弱的学生也会因为有了课前的预习也会写出一种甚至两种解题方法,自己有了发言的底气,便在小组交流时抢着来说。大大增强了这些学生表达的欲望,同时通过与组内学生进行交流又进一步巩固了所学的知识内容。而对于学习能力强的学生补充的其他方法,他们也能够接受并理解。做到了好中差学生之间的互补,充分发挥出小组合作学习中的帮扶作用。有了课前的预习和课上小组中的合作交流,学生对所学内容已经基本上掌握,因此在全班展示时,所有学生都跃跃欲试,愿意在同学面前展示自己,以往传统课堂上没有理会老师提问的现象杜绝了。
本课时的重点是让学生在多种解题方法中总结并掌握估算的技巧,即一是怎样估算才更加接近准确值,二是什么时候选择上估,什么时候选择下估。
通过问题一、二的解决学生已经掌握了解决例题的多种算法。在此基础上小组内再探讨问题三如果有多种算法,比一比哪种更接近准确值?为什么?通过与精确值比较学生很容易找到最接近准确值的那种方法。而这种方法为什么会最接近准确值是学生讨论的重点,也是学生探究和掌握估算技巧的难点。通过小组合作学习,通过老师的适时点拨,学生总结出把算式中的较大的那个因数估成整十数时,得到的估算值最接近准确值。通过问题四在这几种算法中,哪种更好,为什么?再进一步巩固,使学生能够掌握估算的技巧,即使学生懂得在计算时不应忙着下笔,应该先对数据进行分析,找到最佳的算法,得到最佳的计算结果。通过这样的环节,培养学生的优化思想。
在例题后设计了一道有关钱的估算题,学生在独立完成估算后,在交流时发现得到答案不一样:上估后得到带1200元就够了,下估后得到带900元就够了,通过与准确值比较带900元就够了这个答案是错误的。于是我引导学生展开讨论,观察例题和本题,想一想到底什么时候该上估,什么时候该下估?通过学生讨论,老师引导学生得到在估算座位够不够时我们一般下估,在估算钱够不够时一般下估。进一步通过观察、讨论掌握估算的技巧。
每一节课下来总会有些遗憾或不足,本节课亦是如此。
1、课上虽然总结出了估算的技巧,但是由于对估算前观察因数特点选择估算方法这一环节强调的不够充分,所以出现了学生在实际解题过程中还有一部分学生仅仅是完成估算,而没有选择误差最小的的算法。
2、由于教学时间分配不够合理,课堂上解题数量较少,课堂时效性不高。
两位数乘两位数教学反思14
核心提示:两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础。
两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯。
本节课中,在学习探究两位数乘两位数的计算方法时,首先让学生自主探索,然后通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
本节课的教学重、难点是乘的顺序和第二部分的书写位置问题,使学生掌握基本的乘法笔算方法。为了突出重点,突破难点,教学时每做一道题,都让学生在小组内交流算法,发挥小组长的作用,优秀生教后进生;设计层次性强、生活化的练习,即调动了学生学习的积极性,又让学生在生活中学习有用的数学。
两位数乘两位数教学反思15
首先,我想谈谈对教材的理解。本课的教学内容是不进位的两位数乘两位数的笔算,它是在学生已经掌握了两位数乘一位数的笔算、两位数乘整十数的口算、两位数乘两位数的估算的基础上进一步学习的。它是本单元的重点,学生掌握了不进位的两位数乘两位数的计算方法以后,将为进位的两位数乘两位数的乘法,为学生解决生活中遇到的因数是更多位数的乘法问题奠定了基础。
因此本节课的笔算主要是让学生1、掌握乘法的顺序;2、理解用第二个因数十位上的数乘第一个因数得多少个“十”,乘得的数的末位要和因数的十位对齐。传统的计算教学侧重于使学生掌握计算方法,能正确地进行计算。新课程背景下,计算教学不是孤立的,它与估算、与解决实际问题有机结合起来了。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。用旧知识来解决新问题是很好的学习方法,但如何让学生能比较好地接受,需要教师运用好的方法引导。
我一开始出示了一位数乘两位数和两位数乘整十数原来已学过的旧知识,然后通过比较引出了两位数乘两位数这一新的问题,引导学生学习和尝试运用旧知识来解决新问题的策略,这样既体现了教师尊重学生,又体现了较好地发挥教师的指导、引导作用。
先让学生估算,再尝试用笔算,这样既复习了上节课上的估算方法,也为笔算(精算)学习打下基础,使估算、笔算有机结合。为什么“24“的4要与十位对齐,这是这节课的新知,也是这节课的难点。为突破这个难点,我安排学生自己介绍计算方法,让学生自己说出“24”实际上是240,它是由24乘10得到的,它表示的是24个十,这样的安排,对于学生明白算理算法有十分重要的意义。
《数学课程标准》中,在计算教学中提倡算法多样化。算法多样化的目的是能在计算教学中,加强数学思考,尊重学生的个性,体现因村施教,培养和发展学生的创新思维能力。让学生在经历具体算式的过程中,自主运用自己喜欢的方法进行计算。在具体的计算中,体验到竖式计算的的优越性:简洁、明白、通用,易检查,在这个过程中,我始终作为学习活动的组织者、引导者,让学生在自主探索、合作交流中去体会各种算法,但由于对旧知掌握的不扎实导致了后面算法上较单一。
本节课在新知的探索过程中,为了突破重点和难点,我分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口。在对比横式与列竖式时,学生发现“实际上横式与列竖式的算法是一样的。只是呈现的方式不同。列竖式的方法比横式方法还要简便,实际上列竖式也是先算24乘2的积;再算24乘10的积;再把24乘2的积和24乘10的积想加。”第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,对于难点我处理的比较粗,没让学生理解透彻。特别是对算法的教学,理解力好的学生能明白,但中下的学生不一定能听懂。教学时,应需要用不同颜色的粉笔和箭头写明笔算的方法与顺序。在学习活动中,让每一位学生通过动手、动脑、动口积极参与的学习过程,感受“用旧知识解决新知识”这一数学思维方法。
由于这是一堂计算课,为了提高计算能力,同时培养学生认真计算、书写工整的良好学习习惯。所以我在设计练习时明确每一道题的练习意义,确保一步一个脚印,步步到位。使学生从不同的角度加深对法则及算理的认识。只有这样才能真正实现练习的优化。但由于时间的关系练习没完全呈现出来。
回顾整节课的教学,发现自己身上存在太多的问题:缺少对课堂的调控能力,语言不够精炼,对学生的引导不到位,制约了学生对新知的探索。今后的教学中,要努力学习。让每位学生通过动手、动脑、动口积极参与学习,让学生在教师创造的时间和空间中体现自我的价值。
本节课理念新、设计巧、思路清、特色明。总观这节课体现了“简洁而充满活力,朴实而富有情意”的设计理念。它为公开课返璞归真,展示原生态的课,提供了成功的案例。
1、明确教学目标,重视算理算法的理解与应用。《数学课程标准》中指出:计算教学中,“要通过观察、操作、解决实际等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感”。教师在教学中,不仅使学生会算,还通过学生自己的探究,懂得为什么这样算的道理。并在多种算法的比较中使算法得到了优化。
2、通过改进教学方法,促进学习方式的改变。著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,教师在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。教师组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
3、教学内容联系实际,重视学生的体验与感悟。数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教师在引入阶段通过现实数学情境的创设,采取忆旧引新的方法,从复习两位数乘一位数,两位数乘整十数的口算,再引出两位数乘两位的笔算。两位数乘两位数的计算,可以分解为两位数乘一位数和两位数乘整十数来计算,这里教师充分依据学生原有的知识和经验,复习旧知来为学习新知打下了扎实的基础。
4、关注学生良好习惯的养成,重视学习方法、学习策略的指导。我国近代教育家叶圣陶先生曾说过:“教是为了达到不需要教”。本节课自始至终都渗透着教师对学生进行学习方法、学习策略的指导,让学生自己能够运用不同的策略解决实际问题。重点让学生体验到了用旧知识解决新问题的方法。但又鼓励,学生根据各人的实际选用合适的策略。如看书,请教家长老师、同学间相互帮助、独立思考解决等。
5、课堂评价语运用恰到好处,时时处处都在关注促进学生的发展,激励学生学习更好地学习。如:“同学们的估算能力真强!”“仔细严谨,体现了我们学习数学的良好品质!”等都体现了教师看到学生在学习活动中的表现十分满意和欣喜。
【两位数乘两位数教学反思】相关文章:
两位数减两位数退位减法教学反思06-22
《两位数乘一位数》教学反思05-27
《除数是两位数的除法》教学反思(15篇)06-14
《小数乘整数》教学反思06-21
小数乘整数教学反思06-19
战车千乘的意思02-15
《浮力》教学反思06-22
《gkh》教学反思06-20
力的教学反思06-19