作为一名人民教师,我们要有一流的课堂教学能力,写教学反思能总结我们的教学经验,教学反思应该怎么写才好呢?以下是小编收集整理的八年级上册数学教学反思,仅供参考,欢迎大家阅读。
八年级上册数学教学反思1
新课程标准数学实验教材较好地体现了课程标准的理念和总体培养目标。注意从形成学生学习经验的角度出发,充分考虑学生的年龄特征、认知水平,增强了书本知识与现实生活的联系。而数学在锻炼人的逻辑思维能力方面有特殊的作用,而这种锻炼老师不可能传授,只能是由学生独立活动过程中获得。
我在《幂的乘方与积的乘方》这节课,深入理解、研究教材中所提供的丰富的信息资源的基础上,科学合理地使用好教材的这些有效资源。提出适应学生学情的导学提纲,让学生围绕导学提纲进行自读、初构,明确教材中的知识,活化了教材内容,增强了学生对数学内容的亲切感,激发了学生的求知欲。
我根据教学要求,从学生的实际出发,改变教材的呈现形式,把静止的画面变为动态的、有利于激发学生兴趣的、有利于学生参加数学活动和引发数学问题的情境,促使学生积极地去进行探索,使学生学得更积极主动、富有个性。
围绕导学提纲学生讨论、发出质疑,互教互学,我进行了适时点拨,在此基础上,学生把本节知识要点以构图的形式总结,用自己的语言表述,使知识条理化,同时也锻炼了学生的语言表达能力。在这精构过程中,教师不只是被动的课程执行者,而应成为课程的开发者和创造者。通过创造性使用教材,促使学生在知识、能力、情感、态度、价值观等方面得到发展。
而教材中的例题和习题,大都是一些条件充足、问题明确的标准问题,虽然有简洁的特点,却没有给学生留下自主探究的空间。因此,在教学中,我以教材例题为基本内容,对教材内容作必要处理与适当延伸。把封闭的`形式变成灵活的、开放的形式,教学内容的呈现要生动、活泼,富有启发性和趣味性。补充一定的联系拓广问题会激发学生不断去探究,寻找不同的推导方法,从而培养学生求异思维与创新精神,也拓宽了教材资源,激活课堂教学。
实践表明,培养学生把解题后的再构应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行再构,利用作业的再构给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动。
八年级上册数学教学反思2
函数是中学数学中的重要概念、它既是从客观现实中抽象出来的,又超越了千变万化的客体的个性,其内涵极为深刻,外延又极为广泛、所以它既是重点,又是难点、教学时,教师应采取以下有效的措施:
1、注重概念的引入
为引入函数概念,课本上讲了四个例子,教师可根据学生的实际再增加一些例子、对每个例子都要进行分析,揭示它们的共同特性:
(1)问题中所研究的两个变量是互相联系的;
(2)其中一个变量变化时,另一个变量也随着发生变化;
(3)对第一个变量在某一范围内的每一个确定的'值,第二个变量都有唯一确定的值与它对应、
2、准确理解定义
课本中函数的定义包含着三层意思:
(1)“x在某一范围内的每一个确定的值”,是说自变量是在某一范围内变化的,它揭示了自变量的取值范围;
(2)“y都有唯一确定的值和它对应”,它既揭示了所研究的函数是单值函数,又反映了两个变量间有着一个相互依存的关系,即函数的对应法则;
(3)谁是谁的函数要搞清、定义中说的是“y是x的函数”、
3、不断深化概念
在几类具体函数的研究过程中,要注重把所得的具体函数与函数的定义进行对照,使学生进一步加深对函数概念的理解、
4、强化函数性质的应用
不同的函数有不同的特性,探求并掌握一个新函数的性质是我们追求的目标、在掌握函数性质的同时,要注重强化学生应用函数性质的意识、应用函数性质时还应注意以下两点:
(1)、借助函数解题
我们知道,代数式、方程、不等式与函数有着密切的关系,因此可构造函数,利用函数的性质解决有关的问题、例如构造二次函数研究一元二次方程根的分布问题、解一元二次不等式等、
(2)、利用函数解决实际问题
利用函数知识解实际问题是近几年高考出题的热点、这类题目可以培养学生综合运用
知识的能力,增强学生用数学的意识、但教材中这类题目设计得较少,应根据学生的实际补充一定的例题或习题、
5、加强数学思想方法的教学
新大纲把数学思想方法纳入数学基础知识的范畴,因此要加强数学思想方法的教学、函数这一章主要体现了以下思想或方法:
配方法、这一方法要求所有的学生都要掌握、
待定系数法、这一方法是求函数解析式的重要方法,要切实掌握、教学中,还可以根据学生的实际,介绍待定系数在其他方面的应用、
数形结合法、数形结合是数学的重要思想方法、在几类具体函数的研究过程中,要始终抓住数与形的结合,即根据解析式画出图形,又依靠图形揭示函数的性质、数形结合也是一种重要的解题方法,要引导学生利用数形结合法解题,以开发智力、培养能力。
八年级上册数学教学反思3
一、课程分析
本节课是12.3角平分线的性质的第一课时。角平分线是初中数中重要的概念,它有着十分重要的性质,通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
二、学生情况
八年级学生有一定的自学、探索能力,求知欲强。借助于课件的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。通过创设情境、动手实践,激发学生的学习兴趣,促进学生积极思考,寻找解决问题的途径和方法。
在教学中,采用学生自己动手探索的学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
首先,本节课我本着学生为主,突出重点的意图,结合课件使之得到充分的诠释。如在角平分线的画法总结中,我让学生自己动手,并让学生自行思考证明。为了解决角平分线的'性质这一难点,我通过具体实践操作、猜想证明、语言转换让学生感受知识的连贯性。
其次,我在讲解过程中突出了对中考知识的点拨,并且让学生感受生活中的实例,体现了数学与生活的联系;渗透美学价值。
再次,从教学流程来说:情境创设---实践操作---交流探究---练习与小结,这样的教学环节激发了学生的学习兴趣,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。
四、本节课的不足
在授课过程中,我对学生的能力有些低估,表现在整个教学过程中始终大包大揽,没有放手让学生自主合作,在教学中总是以我在讲为主,没有培养学生的能力。
对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这节课的反思我深刻的意识到自己在新课改的教学中还有太多的不足,以后不仅要在思想上认识到新课改的重要性,更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与探究能力。
八年级上册数学教学反思4
平方差公式是在学习整式乘法的基础上得到的.学习“平方差公式”的过程是探讨知识发生的过程,学生们一起研究如何经过由具体到抽象概括得到公式,这将有助于训练学生的思维,使学生领悟到数学的思想和方法.
平方差公式的教学,使我深刻的体会到:数学学习活动,其基本出发点是促进每一位学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有知识经验出发,让学生亲身经历知识的形成和发展过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。对初二学生们来说,数学学习已有一定的能力,但还缺少概括、总结的能力.所以对“平方差公式”的教学,除了让学生掌握公式的结构特征外,还要理解公式公式中字母的广泛含义.另外更重要的是让学生参与到公式的推导过程.
本节课我通过已学的计算引入,借助学生的探究,猜想,讨论,总结,由学生自己得出结论.激发学生学习的兴趣,激活他们的思维。采用“主动探索和引导发现”的教学方法.让学生们充分体会到:数学是可以通过自己的猜想,归纳,总结,和验证能得到的..另外,本节课我注重让学生观察题目是否符合公式的条件,即两个相乘的式是什么,是不是两个式子的和与差相乘,然后再按公式计算.平方差的关键是从多项式乘法到乘法公式是从一般到特殊的认识过程的范例,对它的学习和研究,丰富了教学内容,也开垦了学生的视野.平方差公式应用十分广泛,教学是要注意引导学生进行观察、分析,使学生们掌握平方差公式的结构特征,理解公式的意义,并能正确地运用公式.
最后由于时间关系,对平方差公式的字母的含义强调不够,只是简单地提到公式中的a和b可以是具体数,也可以是单项式或多项式,有时还需要将式子变形,如(a+b+c)(a—b—c),变形为[a+(b+c)] [a—(b+c)]。原因是学生的能力有一个发展过程,理解字母的广泛含义也要结合公式的难易来逐步安排,本节课还没讲到,这个内容留作第二课时讲.
八年级上册数学教学反思5
在指导教师陆春蕾老师的指导下,经过我们的多次沟通,我进行了多次修改,我上了的研究课《14.2.2一次函数(2)》,内容是一次函数的图象和性质。反思这节课,自己评价为很烂的一节课。
1、不足之处:
(1)课前对学生备的不充分,不了解学生对函数图象的画法和正比例函数的图象与性质掌握的程度如何,导致本节课不能按照预期的设想顺利进行。本节课一开始我设计了通过两个具体的正比例函数对正比例函数图象和性质进行了复习,大部分学生对正比例函数的性质掌握的还比较好,第二个活动是通过学生画函数y=x,y=x+2,y=x-2的图象,探究正比例函数和一次函数图象之间的关系,但是由于不了解学生画函数图象掌握的怎么样,高估了学生的能力,看到学生连列表都不知道什么意思,大部分学生不会画函数图象,在这个活动里耽误了很多的时间,我也就有些紧张,有些着急,直接影响了后面的教学活动。
(2)心理素质差,随机应变的能力比较差。由于学生画图象的表现对我的影响,一时的紧张让我对后面的教学有些混乱,思路不清晰,所以后面的教学中有些语无伦次,事先备好的环节不连贯,联系不紧密。
(3)由于活动二浪费了时间,所以后面的活动四探究一次函数y=kx+b(k≠0)中的k、b对函数图象有什么影响的时间就有些紧,探究的不充分,不够,学生思考的时间比较少,没有发挥学生的主体性,让学生真正动起来。
(4)学生比较沉默,不爱说,课堂比较死板,不活跃,所以整节课我说的太多,学生说的动的少。
2、提高的地方:
通过本次备课、说课、上课的活动,我觉得自己也有所提高。
(1)本次课通过与陆老师的`交流,经过陆老师的指导,经过四次的备课修改,反复斟酌,最后成型的。最开始是按照陆老师的要求把一次函数的定义和一次函数的图象与性质合为一节课来讲,于是我就按照我的思路,我的站位备了课。第二次交流的时候,我们觉得这样内容太多,东西也太碎了,于是又统一意见,陆老师讲一次函数的定义,我们讲后一节一次函数的图象与性质。这样我又修改我的教学设计,备好之后给陆老师看,陆老师基于对学生、对教材的理解和站位又给我一些好的建议,我开始了第二次修改,也就是第三次备课。备好之后有拿给陆老师看,一同交流讨论,交换意见,又有所修改,周末回家我又对本节课进行斟酌,修改一些细节的东西,连同学案发给了陆老师,陆老师又认真的看了我的课件和学案,还为我重新设计了学案的排版,替我重新画了平面直角坐标系,使学案看上去更加美观。讲课的前一天我们又重新的沟通了意见,最后敲定。这个备课的过程虽然很复杂,修改数次,但在与陆老师交换意见的同时,使我对本节课的思路更加明确,站位更准,同时也深深的感受到陆老师对教材、对知识的理解,以及对数学思想和学法的渗透真真正正的是从学生的角度出发,以学生为本,这也是我今后应该努力的地方。
(2)通过周一的说课,在吴老师的指导下,我学到了很多关于细节的知识,如:PPt上的格式,对齐方式问题;“1”后面应该是“.”,而不是“、”,PPt上用的字体只有两种:宋体或者黑体;学案应该如何设计更好,坐标系要画的特别标准,并且美观,为此,陆老师特意为我重新设计了学案。这些细节我以前真的都不知道,因为,从没有人和我说过这些问题,我也从没把这些当回事去请教谁,这对于我来说真的是一个很大的收获,非常感谢吴老师和陆老师的指导。
八年级上册数学教学反思6
《轴对称》是人教版八年级的一个重要的教学内容。识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美是课程标准中对这一内容的要求。
本堂课我原本想借助多媒体技术从学生熟悉的生活入手,以“漂亮的”轴对称图形入手,让同学们能直观的感受和认识轴对称图形的'特点。及培养学生关于数学美的数学特点。但由于四班的投影机不能用,最还只得选择以图片的方式,也达到了较好的课堂效果,只是缺少动感效果。
第一:在观察思考中掌握轴对称图形及其概念。
由于不能用多媒体,我就打印了一些轴对称图形的图片,上课时我让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形是否是对称的,并通过小组动手对折的方法操作来验证它们为什么是对称的,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,从感观上体会什么是“完全重合之后。我就可以给出“轴对称图形”的概念,随后我给出几组图形让学生判定是不是“轴对称图形”。让学生再次明确什么是“轴对称图形”。
第二:学会找轴对称图形的对轴称
在上一环节让学生对折,然后给出几组图形,让学生发生轴对称图形都是通过某一直线后,两部分会重合。那那条直线就显得很重要,让学生明白“对称轴”的重要性,也知道如何找对轴称。给出对称轴的定义后,我还是选择了几组有特点的轴对称图形,让学生找对称轴。并判断那一组图形当中是不是只有一条对称轴。再下一步,找出轴对称图形的所有对称轴。
第三,轴对称图形和两图形关于某直线对称区别及联系
对于这一点我是让学生自己以小组的方式来讨论,最后以小组汇报的方式让学生自己总结,最后由我自己来归纳总结。这样子一来可以让学生在课堂最后时间有兴趣学,也通过讨论让学生更加明白什么是轴对称图形及两图形关于某直线对称的定义。可以很好的取得教学效果。完成本课的教学任务。
在完成本节课的教学任务的时候,我还是注重了向学生介绍数学美的观点,以轴对称图形入手,然后介绍我们的证明的简结,论题的简洁……等等。本次课取的了比较好的教学效果。
八年级上册数学教学反思7
安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的`作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的不是很充分。
性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。
在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。
要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。
八年级上册数学教学反思8
新课程理念如何转化为教学行为始终让我在思考,在尝试究竟怎样教会学生思考,才能使复杂的数学问题简单化呢?听了向坝中学廖秀丽老师的一节课体会颇深,首先他利用几条直线相交分别做成的三朵小花,既复习了内角和定理及其推导过程,又进一步体会转化思想,让学生观看花瓣上∠1+∠2+∠3=?∠1+∠2+∠3+∠4=?∠1+∠2+∠3+∠4+∠5=?其实∠1、∠2、∠3、∠4、∠5就是多边形的外角,学生借助平角定义很快得到和为360°此时再告诉学生这些角就是外角。
让学生观察外角特征,明确外角定义、外角个数、外角和的内容,这一切全让学生自己完成,使知识由难变易,本人通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己讲解,锻炼学生勇气及语言表达能力,激发了学生学习积极性,真正培养学生的综合应用能力,学生在可见的情境中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来,其次通过四道习题巩固知识点后,提出一个问题是否存在一个多边形,它的每一个外角都等于相邻内角的16。
因为除不尽,此题正好纠正了学生一个思维误区,我认为此题非常必要,在不增加学生负担的基础上,挖掘出一个学生极易犯的错误,有利于深化学生知识,且本人用×180°=6×360方法解决更简单,更能使思维上升一个高度。
集体备课时对如何引入外角?产生的疑惑,是利用跑步身体转过的`角度,还是直接出示定义,要处理的非常到位,真正完成了新旧知识的衔接过渡。
把复杂的数学知识直观形象的让学生自己探索得出,这种讲课思路值得我们借鉴,新课程倡导教师用教材而不是简单的教教材,教师要创造性地使用教材,要融入自己的科学精神和智慧,要对教材知识进行重新组和,选取更好的事例对教材深加工,设计出活生生的、丰富多彩的课来,充分有效的将教材的知识激活,形成有教师教学个性的教材知识,所以我们可结合学生实际适当改变例题,充分发掘教材中的情感因素,化生为熟化难为易化理为趣增强数学的魅力,激起学生学习的信心和兴趣,形成课堂教与学的合力,我们要让学生感悟数学,真正成为学习的主人,教师要做好学生学习道路上的引路人。
八年级上册数学教学反思9
《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用。上完本节课后,通过其他老师交流,自己静心反思,我主要有以下体会:
一、课前的认真准备是上好一节课的关键。
作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。但是由于我在上这一节课的时候,连着前面轴对称的性质的内容一起上了,从而导致内容太多,重难点没有很好的突出。
二、在教学活动过程。
整个教学过程中,没有很好体现以学生发展为本的精神。虽然从问题的导入,性质,判定的引出都是由学生动手操作讨论得出,但是由于我在安排这节课的时候,准备要讲得内容太多,导致很多时候都是我一个人在讲学生在听,学生动手写练习的时间就变得很少。再者这节课的重点是线段垂直平分线的'性质和判定,我也没有很好的突出重难点。虽然有很多不足之处,我觉得有些地方还是可取的,如:
1、注重数学思想方法的渗透。
如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。
2、注重学生几何语言的训练
在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。
本节课得到的定理为:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
用几何语言表示为:∵MN是AB的垂直平分线,点P为MN上的任意一点(已知)。
∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)
通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。
逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。
用几何语言表示为:
∵PA=PB(已知)。
∴点P在AB的垂直平分线MN上。
(和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)
3、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。
三、教后反思。
针对这一节课中出现的问题,我做出了如下的反思:首先在备课的时候,一定要抓准重难点,安排好一节课的内容,抓准一节课的时间;其次一定要体现以学生为主的原则,要讲练结合,给学生足够多的时间做练习,充分理解接受新的知识。在今后的教学中,我一定不断不改进自己的不足之处。
八年级上册数学教学反思10
本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形。学习等边三角形的定义、性质和判定,再折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度。让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。 让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
在教学过程中,我穿插习题进行练习,让学生在学习新的知识的同时,能运用知识解决问题。让他们在掌握新知识的同时,复习前面已学过的知识。同样等边三角形也配相应的题目进行巩固。在课本后面的练习中,介绍既是直角三角形又是等腰三角形的是等腰直角三角形。将课本知识进行进一步拓展。
纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的'教学框架:首先是创设情境,导入新课;其次是放手学生,探究新知;最后是归纳总结,拓展延伸。能够利用电脑多媒体的优势,练讲结合。从学生感兴趣的问题入手,主动进入到学习的情境中去。而不是让老师牵着鼻子被动前行。但不足之处也有几点:只备教材,而对学生却备得不够。如在学生动手折等边三角形时,很多学生都没成功。在教学过程中,语言不够简炼。尤其是对一些数学术语把握得不够。
总之,在这节课中,我充分考虑到学生的知识基础,给学生充分的自主探究机会,尝试提出问题,解决问题。发展学生的自主探究的能力。通过这次研讨课,我感觉自己受益匪浅,并由衷地庆幸自己能获得这次难得的机会,并时时提醒自己,在以后的教学中,努力进取,从而逐步提高自己的教学水平。
八年级上册数学教学反思11
一、本节课的教学内容为反比例函数的图像与性质的新授课第三节课,在“数形结合”的主线下,使学生具有了自我更新知识的能力,具有了可持续发展的能力。
二、首先简单复习了反比例函数与一次函数的表达式、图像、图像象限和增减性,其次利用基础训练的五个题目求反比例函数表达式和图像及增减性,复习一下代入法和待定系数法;
三、例题精讲,在例题的处理上我注重了学生解题步骤的培养;同时通过题目难度层次的推进;拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题;达到在课堂中就能掌握比较大小这类题型。但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
例题在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对所学的一次函数坐标等方面可以有一点的`复习。从整体来看,时间有点紧张,尤其是最后一个与一次函数相结合的综合性题讲解得太少,学生还不太能理解,导致小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势
四、不足:虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性,本节课的时间分配上还可以再调整;总之,我会在以后的教学中注意细节问题的。
八年级上册数学教学反思12
“有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。
研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的'比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。
八年级上册数学教学反思13
一、教材分析
本节内容主要介绍平方根与算术平方根的概念,先讲平方根,再讲算术平方根。下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打牢基础。平方根和算术平方根的概念属本章的重点内容。它是后面学习实数的准备知识,是学习二次根式,一元二次方程的基础。另外,从运算角度来看,加与减,乘与除,平方与开方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。
二、教学过程设计
一般新知识都是建立在原有知识的基础之上的,引入新课是建立在学生对数字的规律和联系的把握上的,学生是比较容易接受的。为此,我在教学时设计了这样两种题目:一种是知道正方形的边长求面积;还有一种是知道正方形的面积求边长,对于第一种题目,学生利用正方形的面积公式很快就可以解决,,对于第二种题目,面积为9、16、49的,学生也可以很快利用平方的知识进行解答,但是当面积为10时,学生就被难住了,到底边长应该是多少呢?若设正方形的边长为x,则符合题意的方程为x2=10.归纳出问题的实质:要找一个正数,使这个数的平方等于10.
学生无法找到一个数,使它的平方等于10,这时,我告诉同学们,当我们无法找到符合这个条件的数时,我们就需要引入一个新的`知识:平方根(引入新课)。那到底什么叫做平方根呢?首先由学生回答四道计算平方的算式,然后由学生通过观察,并结合互逆运算的知识,启发学生找出等式两边存在的联系,最后我在学生总结的基础上,进行点播:等号右边的数叫做等号左边各数的平方数;反过来,等号左边各数就叫做等号右边各数的平方根。然后进一步归纳出三个结论:一个正数有一正一负2个平方根,它们互为相反数;0的平方根只有1个,还是0;负数没有平方根。通过这些探索,最后让学生体会到,要求一个非负数的平方根,可以利用平方来检验或寻找。
2.引导概念的符号表示
通过学生动脑,动口对平方根概念进行正说与逆说(如:9的平方根是,反过来是9的平方根),加深对平方根概念的初步理解;然后在上面叙述的基础上提出平方根概念的符号表示方法后,再次利用学生所举的上列等式,提出问题:请你用符号语言来表示等式右边各数的平方根,并计算出结果。本环节,学生对平方根概念的理解经历了由文字语言到符号语言的转化。
3.巩固提高
得到概念后正面的强化很重要,因此在第三个环节,我设计了例题:如何求一个数的平方根,算术平方根?先自己板书,给出规范的书写格式和正确的表达方法。随后就是通过不同形式的练习,让学生对平方根的概念及表示方法形成正确的印象并加以巩固。
三、不足分析
1.概念的讲解得不够详细到位,我并没有紧紧地抓住概念的内涵。平方根这一概念,关键在于“根”字上。我通过实际例子培养了学生的数学建模能力,也顺利地列出方程x2=25,就是没有很好地把握住x=±5是方程x2=25的根这一关键之处。
2.由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是表示不规范。求49的平方根,他写成“=±7”出现错误。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别与联系,在讲课中应反复强调平方根与算术平方根的区别与联系。
3.没有对概念进行总结。在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。
4.学生的练习不够。学生对概念的理解只停留在死记硬背,机械模仿的阶段。所以,今后在课堂上要多给学生练习巩固的时间,多提供一些类型不同的题目,使学生在练习中慢慢强化对概念的理解。
八年级上册数学教学反思14
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的.新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
八年级上册数学教学反思15
面临国庆假期,学生有些沉不住气,放假回来还要进行月考,无疑,这对学生是一种考验,学生没有足够的自制力利用假期进行复习,只要它们能够按时完成作业我就心满意足了。因此,要在假期前做一定的准备,按照我们的集体备课时间,我们赶在运动会之前专门安排一节课进行复习,也算是自我安慰吧。
本次考试我们把前两章的内容都加进去。第一张前面进行了复习、检测,也比较简单所以专门针对第二章进行重点复习。第二章轴对称主要内容是从生活中的图形入手,学习轴对称及其基本性质欣赏体验轴对称在生活中的广泛应用。然后在此基础上利用轴对称,探索等腰三角形的性质,学习它的判定方法,进一步学习等边三角形。本章轴对称的性质、等腰三角形的性质和判定是重点要注意让学生掌握。人们生活在三维空间里丰富多彩的图形世界给图形与几何的学习提供了大量素材,在教学中我们注意联系实际,从实际出发引入概念并将所学知识应用到实际生活中。本章内容较多,教学时注意各部分之间的联系,进行有机的整合。在内容处理上书中含有大量的.思考、探究、归纳等然后学生多活动,探索发现几何,经历知识的“再发现”过程。在探究活动中发展创新思维能力,改变学生的学习方式。在发现的基础上再经过推理证明这些结论使得推理证明成为学生观察、试验、探究得出结论的自然延续是图形的认识与证明有机的整合。例如Χ缘妊三角形“等边对等角”“三线合一”的性质的得出ネü设置“探究”“思考”让学生剪出等腰三角形,并进一步利用轴对称的性质思考其中相等的线段和相等的角,进而发现等腰三角形的性质。
接着通过做出等腰三角形的对称轴得到两个全等的三角形,从而利用三角形的全等证明。这样让学生经历观察、试验、探究、归纳、推理、证明的全过程。
【八年级上册数学教学反思】相关文章:
上册数学教学反思04-18
八年级上册数学教学反思04-16
八年级上册数学教学反思05-29
八年级数学上册教学反思12-09
数学上册《回家路上》的教学反思10-20
八年级生物上册教学反思04-10
八年级语文上册教学反思08-29
八年级英语上册教学反思02-11
八年级上册生物教学反思10-29
语文八年级上册教学反思03-06