圆柱的表面积教学反思

时间:2024-06-20 18:01:00
圆柱的表面积教学反思范例15篇

  身为一名刚到岗的教师,教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,那要怎么写好教学反思呢?以下是小编整理的圆柱的表面积教学反思,希望对大家有所帮助。

圆柱的表面积教学反思1

  数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践, 自主探索,合作交流是学生学习数学的重要方式。而且要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察,触摸,与同学对比,拿尺子量各自手中的圆柱,在观察,触摸,对比,测量中得出圆柱的特征。特别是在教学圆柱的侧面积时,我没有包办代替,充分让学生动手实践,操作,自己知道了圆柱侧面展开可能会出现的图形是长方形,正方形和平行四边形,而且弄明白了展开图形与圆柱各部分之间的关系,自己推导出了圆柱侧面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。可以说,整堂课的学习过程,我不是让学生被动地接受教材或教师给出现成的结论,而是通过合理的实践活动,让学生经历了知识的'再创造'过程。由于学生经历了不断的'再创造',主动地从事数学思考,理解,在理解的基础上建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收。教师在本节课也真正体现了组织者,合作者,引导者的身份。对于圆柱的侧面积:重点在于圆柱的侧面与长方形的转化过程。如何把底面的周长、高与长方形的长、宽对应起来是关键。

  在这节课中,我是用一张长方形的纸卷也一个圆柱体的.管子,做演示。同学们都能理解,把侧面打开就成了长方形,再换个角度,就能看到底圆周长=长方形的长,圆柱的高=长方形的宽。

  对于表面积的处理,我先让学生自己找找,什么是圆柱体的表面积。通过学生在书本中画,小组讨论得出;圆柱体的表面积=侧面积+两个底面积。

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1、重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2、重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3、重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

  圆柱体的表面积的计算是在学习了圆柱特征的基础上进行教学的,这节课的主要内容包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。在新课的进行中始终抓住重点难点,教学思路清晰,引导学生大胆探索思考,独立解决问题。教学中面向全体学生,做到精讲多练,讲练结合。让学生自己发现问题自己解决问题,在有争议的问题上教师能适时点拨学生自己去寻找正确的答案,使他们享受成功的喜悦,同时也把数学与生活紧密的联系起来,从而培养了学生学习数学的兴趣。

圆柱的表面积教学反思2

  无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的.一大考验。

  为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。

圆柱的表面积教学反思3

  一、创设情境,悬念导入。

  上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?

  板书课题:圆柱的表面积

  二、合作探究,发现方法。

  1、圆柱的表面积包括哪些面的面积?

  2、研究圆柱的侧面积。

  (1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?

  (2)学生想办法亲自验证。

  (学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)

  师问:①剪、拆的过程中你有什么发现?

  ②长方形的长当于什么,宽相当于什么?

  ③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?

  (3)推导圆柱体侧面积的计算公式:

  通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽

  所以:圆柱的侧面积=底面周长×高

  3、明确圆柱的表面积的计算方法。

  师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?

  板书:圆柱的表面积=圆柱的.侧面积+两个底面的面积

  三、实际应用

  现在你能求出做这样一顶厨师帽需要多少面料吗?

  出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  1、引导:①求需要用多少面料,实际是求什么?

  ②这个帽子的表面积 的是什么?

  2、学生同桌讨论,列式计算,师巡视指导。

  3、汇报计算情况。

  板书:帽子的侧面积:3.14×20×28=1758.4(cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4≈20xx(cm2)

  答:需用20xxcm2的面料。

  四、巩固练习:课本第14页“做一做”。

  五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。

  六、作业:课内:练习二第5、7题;课外:练习二第6、8题。

  附:板书设计

  圆柱的表面积

  长方形的面积= 长 × 宽

  圆柱的侧面积=底面周长 × 高

  圆柱的表面积=圆柱的侧面积+两个底面的面积

  例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  帽子的侧面积:3.14×20×28=1758.4cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4

  ≈20xx(cm2)答:需用20xxcm2的面料。

圆柱的表面积教学反思4

  圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法,

  方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)

  方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)

  方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)

  方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的`周长)

  方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。

圆柱的表面积教学反思5

  比例的知识在工农业生产和日常生活中有着广泛的应用。例如绘制地图需要比例知识,在生产和生活还经常用到两种量之间成正比例关系或反比例关系。比例的知识还是进一步学习中学数学物理,化学等知识的基础。另外,通过对比例知识的学习还可以加深学生对数量关系的认识,使学生初步了解一种量是怎样随着另一种量的变化而变化。获得初步的函数观念,并利用这些知识解决一些简单的实际问题。因此学好比例这部分内容是很重要的。

  一、在学生学过比的知识的基础上进行的教学。

  教材分两段,先教学比例的意义,再教学比例的基本性质,并根据这个基本性质教学解比例。我在教学这部分知识的时候,先让学生自学,上了一节预习课,学生做好学习笔记,包括获得了哪些知识点;根据自己的理解如何去把知识讲授、传达给其他同学,另外,还要记录好自己有哪些疑问等等。

  二、通过一个例子,就得出了比例的基本性质。

  通过一个例子,就得出了比例的基本性质,还有一个同学提出了一个问题:在研究比例的`基本性质时,为什么要两内项乘两外项乘,为什么不相除,或相加、减呢?通过学生的这些表现,我感受到让学生去经历问题产生的过程,教给学生研究问题的方法,科学、研谨地去研究一个问题这方面还是有欠缺,还需要加强训练。针对这一感觉,我及时给学生补充讲解道:这一规律的得出,实际上是一个科学研究的过程,同学们说通过一个事例就能轻易下结论吗?学生说不应该这样,那应该怎么样呢?学生继续说:“应多举几例子,然后观察是

  否都存在这种规律,然后才可以下结论。”又有一个学生说:“得出结论之后,还应该继续举例验证。”我肯定了学生的这些说法之后,我又继续解答学生提出的疑问:“其实科学家在发现、研究这个规律的时候,是经过了一个反反复复,曲曲折折的过程的,他们有可能也试着去除过,试着去相加,或相减过,反复试验,才发现两内项相乘的积和两外项相乘的积是存在一定规律的,从而得出了比例的基本性质。”接着我又给学生总结:“要研究一个结论,经过一个举例——观察——得出初步结论——验证的一个过程,在研究过程中,一条路走不通,就变换不同角度去考虑问题,这就是科学研究的过程。以后我们在学习的过程中,不但要学习知识结论,更要学会研究问题的方式方法,做到既要“鱼”,又要“渔”。” 解比例教学反思

  “解比例”这一课时内容比较简单,重在鼓励学生解法的多样化,所以在这一课时的教学中我是这样来教学的:“解比例”时用比例的基本性质解,这是本课的基本方法,在学生掌握了这种方法后,再引导学生把比例和除法联系起来,用比例与除法的关系解。同时我还引导学生用比例与分数的联系来解.我认为这样鼓励学生解法的多样化,既可以沟通知识的内在联系,提高对知识的整体掌握水平,又培养了学生思维的灵活性.

  但在批改作业时发现一些问题:一是有的同学上课不注意听讲,把有未知数的乘积放到了等号的右边,虽然这也不算错,但与我们平时的习惯不大相符,看着有点儿别扭;二是比例的基本性质掌握的还不算好,个别同学看到分数形式的比例就不会用比例的基本性质了,还得把它转化成有比号的形式再用。这些表明我在教学时的疏忽,没有及时发现、解决问题,致使出现了这种情况。这个现象也提醒我,无论多么简单的知识,都要落实到位,千万不能大意。越是简单易懂的知识越是要耐心,要让每一个学生都过关。

  成正比例的量》教学反思

  在教学成正比例的量之前,学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。在教学例1,自学例2时,我都鼓励学生去观察,去探索。尤其是例1,通过学生观察,找出规律,填写表格。通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性,在揭示成正比例的两种量的特点及性质时,让学生根据问题:

  1、表中有哪两种相关联的量?

  2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化的?

  3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来组织、归纳、得出其性质和意义。在教学例2时,我安排了自学,让学生自主的去获取知识。每个学生都希望自己的想法能跟老师的接近或相同,这样他们会有成就感,从而增强他们学好数学的信心。在整个教学过程中,我始终处在引导、辅助的地位。让学生成为课堂的主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属

  于他们的,这节课是属于他们的。让每个学生都有回答问题的机会,因此这节课的教学效果比较好。

圆柱的表面积教学反思6

  通过本节课的教学,使我深深地认识到同学们的学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。

  在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。

  第二环节中,让学生在熟悉的生活背景下,根据已掌握的.数学知识大胆探索,培养了学生分析能力和创新意识。在课堂上多给学生发言展示的机会会极大地调动学生的潜在意识,使其情感上得到满足。

圆柱的表面积教学反思7

  苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。

  一、创设问题的情景

  在新授时我打破以前拿出一个圆柱放在桌上直接进行侧面积公式推导模式,而是提供给学生两个空心纸圆柱,一个矮胖型,一个瘦高型,鼓励学生大胆猜想,“谁的侧面积大一些”。学生们看到两个圆柱表现得非常积极,兴趣十分浓厚,思维也很活跃。有的说:“我认为矮胖型侧面积较大。”我就追问他为什么?他说:“矮胖型圆柱比较粗,我认为圆柱侧面积与它的粗细程度有关。”有的说:“我认为瘦高型的圆柱侧面积较大。”我也追问他为什么?他说:“瘦高型圆柱比较高,我认为圆柱侧面积与他的高低有关。”当然还有一部分认为它们的侧面积相等或无法判断的,因为他们认为圆柱的侧面积与圆柱的粗细和高低都有关系,甚至还把小的那个圆柱放在大圆柱内,再把大圆柱底面捏起来让我看。对子上面的回答我都没有给予直接肯定或否定,关键是我认为通过学生们对两个圆柱的观察都已认识到了非常重要的两点,即圆柱侧面积大小与圆柱粗细和高低有关。通过这样创设情景设疑大大激发了学生的直觉思维,而不是像以前对照公式直接去讲解。与此同时我再设一疑,这两个圆柱到底谁的侧面积大,你们能否通过动手来证明呢?

  二、动手操作,实践领悟

  在允许学生想一切办法证明自己的猜测时,学生们再一次表现了良好的学习兴趣,个个动手动脑,有的沿高直往下剪,把圆柱侧面剪开得到了一个长方形的展开图;有的斜着剪下来得到一个平行四边形;有的剪成各种不规则图形;还有的剪成若干个三角形,梯形等等,体现了学生思维的多样性,差异性。也使学生一下子明白其实求圆柱的侧面积完全可以转化为我们以前学过的图形。既然圆柱的.侧面积可以转化成这么多以前学过的图形,那你们觉得把它转化成哪一种来求更为合理呢?

  三、讨论交流,合作探索

  因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、性质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。

  四、实践应用,发展能力

  在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生独立进行解答。侧面积会求了又如何求圆柱的表面积呢?独立解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。

  这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手操作能力与创新精神。

圆柱的表面积教学反思8

  [头疼问题]

  近期六年级的任课教师都会头疼我们也不例外

  年级组集体备课时会叹气

  在走廊里碰头时会感慨

  叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)

  这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子

  什么地方出问题了?

  [细细掂量]

  一轮本子改下来错误有以下几类

  1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)

  2、中等生:求表面积时,大概知道侧面积+两个底面积;但真正列式的时候底面积没乘2;而到了只需要加一个底面积的时候(无盖水桶等实际问题的时候)却乘2;

  3、学困生:列出的算式都有问题。一查,圆面积计算公式都不会(够厉害),最基本的都不会,圆柱的表面积和体积又如何能正确求出;个别的20多分钟头都不抬,就在计算一个图形题,仔细一看列式出错,后面的脱式计算过程中的结果有的有6、7位小数;依然不知疲倦的算啊算,看着都累

  4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。

  [标本兼治]

  1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。

  2、中等生、学困生:

  (1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。

  (2)重点分析典型习题,帮助学生找到审题、列式、解题的方法和策略,并针对性练习,提高技能

  (3)重点强记:3.14*1=…………………3.14*9= 常用计算结果,达到熟练程度,提高练习时的计算速度和正确率,也可以用于检验计算过程中的结果正确与否。

  (4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的.效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。

  [写在结尾]

  有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。

  也欢迎大家说说自己的好的做法,共同提高第二单元的质量

圆柱的表面积教学反思9

  在教学圆柱的表面积时,由于学生已经学习了长方体和正方体的表面积,而且上节课已经制作过圆柱模型,所以学生对表面积含义的理解并不困难。因此在教学圆柱的表面积时,我让学生通过讨论交流并观察圆柱展开图,很快就理解了圆柱的表面积是由一个曲面和两个完全相同的圆围成的。但在计算表面积时,侧面积的计算方法是本课中的教学难点。学生往往不能将圆柱的底面半径及圆柱的.高,和圆柱侧面的长宽建立起联系,因此在教学时我加强了学生的操作活动,让学生预先在展开后的图形中标明圆柱的底面和侧面,以便把展开后的每个面与展开前的位置对应起来但在计算时却出现周长与面积混淆,所以我及时帮助学生理清解题思路,让学生明确计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。而且要能熟练区分圆的周长和面积的计算公式。尽管如此学生在解决实际问题时还是问题很多,因为步骤较多,计算粗心不规范也影响了解题速度和准确率,所以一节课下来,课堂容量不大,效率较低,看来在这个单元的教学中要结合学生实际再改进教学方法,提高课堂教学效率。

圆柱的表面积教学反思10

  圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

  接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

  [圆柱的侧面积和表面积]

  沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即s圆柱侧=ch=2πrh(r为圆柱底面的半径)

  圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2

  教学时,要把圆柱的`侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。

  学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。

  《圆柱的侧面积和表面积》教学片段

  在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

  我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

  求铅笔涂漆部分的面积是求()的面积;

  压路机滚动一周压过多大路面是求()的面积;

  求一个水桶用多少材料是求()的面积;

  求汽油桶用多少铁皮是求()的面积。

圆柱的表面积教学反思11

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的.长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱的表面积教学反思12

  圆柱圆锥是小学阶段几何教学最后一部分内容,圆柱表面积计算公式的探究非常适合学生自主探究。结合我校开展的“提纲导学、自主探究”活动,在本节课的教学中,我做了积极的尝试,效果非常不错。

  首先,在新授课之前,我在去年设计的道学提纲基础上稍作修改,形成了自己的导学提纲:

  1、找一个圆柱形的物体,测量出它的底面直径和高(尽可能取整数,最多保留一位小数)

  2、你能动手用彩色纸给这个圆柱形的物品穿上漂亮的“外衣”吗?动手试一试

  “穿衣”之前先思考:圆柱形物品有哪几个面?这些面都是什么形状?

  3、把圆柱体的漂亮外衣脱下来,展开铺在桌面上观察:圆柱的外衣包含哪几部分?都是什么形状的?

  4、你能算出用了多少彩色纸吗?注意观察:计算每部分的面积所需要的数据,就是圆柱的什么?

  5、将你的计算过程试着写在反面。

  把这个提纲发给学生,作为晚上的作业。因为学生有了圆的周长、圆的面积提纲导学探究经历和体验,对这次的.探究比较有兴趣,加之家长的大力支持,全班同学都很认真很用心的进行了探究实践,不及给圆柱体穿的外衣漂亮、精致,而且认真按提纲的要求进行了观察、思考。

  课堂上,学生饶有兴趣的互相展示了自己的作品,互相交流了自己的实践过程和操作中的乐事。在此基础上,孩子们争先恐后的举手发言,向全班同学展示自己的探究过程和发现。他们通过动手实践发现:给圆柱穿上外衣需要一块长方形的彩纸和两个同样大小的圆形,长方形那个彩纸的长等于圆柱地面周长,宽就是圆柱的高,而两个圆形就是圆柱的底面。孩子们互相交流,互相补充,很自然很直观地得到了圆柱的表面积计算公式,老师在这其中只起到了一个穿针引线的作用,课堂气氛活跃,孩子们学的轻松愉快而且扎实。

  不足的是,课后练习时,学生计算时由于数字不好算,常有为难思想,计算失误较多。还有的学生,列式时容易丢三落四。

  通过本节课的教学,我以后会注意以下问题:

  一、提纲导学法是很不错的方法,以后会根据课题继续尝试。

  兴趣是最好的老师,这种作业学生比较喜欢,并且各种能力都会得到锻炼和提高;让学生能够按提纲步骤探究,避免了上课探究时小组活动中部分孩子的“观众、听众”角色,每个人都要自己亲手去做,提高了学生参与意识;家长参与了孩子的活动过程,关注了孩子的发展过程,有助于了解孩子的情况;

  二、探究不能只重过程忽视结果

  在学生探究得到结果后,更要重视知识的灵活运用,要注意不能让学生重过程轻结果,更要重视培养和发展学生运用所学知识解决实际问题的能力。解决问题时,比较复杂的问题,不要列综合算式,以免把本来会做的题弄错,提高正确率。

  本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课教学与练习巩固有机地融为一体,使学生做到动手与动脑相结合,使课堂做到讲与练相结合。为了让学生能更好地掌握本节教学内容,我认真地分析了教材的教学三维目标要求与学生的实际数学水平之后,并结合学生现有的数学基础,在教学时,着重注意做好以下几个方面:

圆柱的表面积教学反思13

  “圆柱的表面积”这部分教学包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  本节课在教学上采用了引导、放手、引导的方法,通过的“导”,鼓励积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精设疑:圆柱的侧面是个曲面,计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在的启发下,学生以小组为,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,我改变了传统的'先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

  1、培养了学意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作中,较好地培养了学生的合作能力。

  2、培养了学生的能力。

  新课程提出:“使学生初步学会运用所学的知识和方法解决一些的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  本节课合理地利用了多媒体教学。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观和理解,使学生感受到了数学与现实生活的密切联系。

圆柱的表面积教学反思14

  我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的.原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。

  一、小组合作学习的组织有序

  这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。

  二、学生操作的缺失

  整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。

  三、教师指导还需到位

  由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。

圆柱的表面积教学反思15

  练习课是小学数学教学中最难驾驶的课型之一。它需要教师对教材、学生的实际了如指掌,这样才能恰到好处地选择练习时机,确定练习内容,安排课堂结构。因而本节课的练习的设计围绕如下四点进行:

  1、这一节是圆柱表面积计算的练习课。学生对刚学的知识还不够熟练,往往容易将侧面积公式,表面积公式,圆周长公式,圆面积公式等混淆。针对学生的这个问题,我首先让学生回顾圆柱表面积计算的方法,进一步让学生明白求圆柱表面积的不同方法,再通过填表让学生得到巩固。

  2、在实际生活中,所求的面积要根据具体问题来灵活确定,因而试设计了让学生根据具体问题来确定所求问题是求哪些面的面积这一环节,从而使学生在具体问题中理解解答问题的方法。在这一环节中,还安排了让学生小组讨论:解答这些问题的注意点,使学生在交流和讨论的过程中明白解答这些问题时要注意以下三点:

  (1)要注意所求问题是求哪些面的面积;

  (2)要注意统一单位;

  (3)要弄清楚采取哪种方法取近似值。

  3、将圆柱采取不同的分法其表面积的变化不同,因而要让学生理解其变化规律。在这节课上,我设计了让学生通过讨论来理解变化规律的环节,这一环节的设计为学生解答有关表面积变化的问题打下了牢固的`基础。

  4、在练习中,除了有单纯计算圆柱侧面积和表面积的问题外,更多的是一些生活中的实际问题,通过这样的综合练习使学生解题能力得以提高。

  本节练习课,在让学生进行基本练习的基础上,通过小组交流、讨论,使学生进一步步认识了圆柱的形体特征,使得学生利用公式进行熟练的计算。大部分的问题都是引导学生自己开动脑筋,积极思考,获取知识,这种做法,对学生掌握基础知识,领悟数学思想和方法,提高数学能力起到了积极的促进作用。

【圆柱的表面积教学反思】相关文章:

“圆柱的表面积”教学反思04-14

圆柱的表面积教学反思06-20

《圆柱的表面积》教学反思(15篇)08-30

圆柱的表面积教学反思15篇01-04

圆柱的表面积教学反思(15篇)03-14

《圆柱的表面积》教学反思(精选15篇)03-13

《圆柱体的表面积》教学反思04-22

《圆柱的表面积》教学反思汇编15篇03-10

圆柱的表面积教学反思合集15篇04-14

《圆柱的表面积》教学反思集合15篇03-22