作为一位刚到岗的人民教师,教学是我们的任务之一,对学到的教学技巧,我们可以记录在教学反思中,那么优秀的教学反思是什么样的呢?以下是小编收集整理的分式的教学反思,仅供参考,欢迎大家阅读。
分式的教学反思1
分式这章的内容在初中教学的过程中,属于中难度的知识。首先学生在理解它的定义上就有难度。类比整式,概念上就难以建模。分式有意义无意义,分式值为0、不为0,分式值为正或负的概念出现,又给学生学习的过程中设置了难度。在第二大块的分式运算中又是多块知识点的综合和应用。要理解分式性质对通分和约分的理论支持作用,同时还要能准确的计算最简公分母、公因式,能准确进行整式的加减和乘除运算,还要能够准确进行因式分解的计算。所以这部分内容实际上对学生的理解、建模、迁移及计算能力有很高的要求。很多同学是越学越糊涂,学完后都不知所以然甚至什么都不会。更不要说加上后面的分式方程。两部内容完全理不清。分不清谁是谁,到底该怎么算。分式的加减、乘除及混合运算更是错误百出,感觉分不清计算的思路和方法。因此在复习中重点解决的就是这些概念、定义及运算中的.易错点和难点。针对复习过程中出现的问题,我总结了以下几条:
一、概念混淆不清,计算过程错误百出
分式运算的错误常见的类型有对分式性质不理解、对运算律的不掌握、对运算法则的不熟练。而运算的准确性是学生计算的基本要求,很多学生产生错误了不以为然,认为是粗心或者马虎的原因。实则不是,这是因为他们对基本的定义和概念理解不透彻,对基本公式、法则掌握不熟练造成的。要解决这些问题,必须重视相应知识点的理解和训练,把分式运算中的知识点逐一分析,专项练习巩固,重点突破,多联系和测验,及时检查纠正。不让问题堆积,查漏补缺,对普遍性错误重点讲解,以便引起学生足够的重视。
二、畏惧心理和畏难情绪
分式运算字母多、式子长、综合要求高,不少学生一看到分式运算尤其是混合运算就头大,信心不足,甚至产生畏难心理,一算就错,一讲就懂,在算还是错误层出。面对这种问题,应着眼于以下几点:
(一)总结分式运算中各种容易出现的错误问题,力争逐一练习和得以解决。加减乘除一项一项的练习,在进行混合运算。
(二)营造轻松愉快的学习氛围,分层次进行练习,由易到难,由简到繁的设置题目,让各层次的的学生都能有所收获,增强自信心,减轻心理负担。
(三)教会学生计算的方法、明白运算顺序和运算的技巧,拆项训练和递进训练同时进行。帮助学生分析出错的原因并加以辅导,争取优生更优,差生提升,全员掌握。
三、审题不清,分析不到位
很多学生在分式运算的过程中出错,主要是因为不重视审题,题目还没看完就动笔,不研究题目的结构及运算顺序。随意通分约分,不看题目结构特征、不遵循运算顺序。要教会学生在审题时注意以下几点:
(一)题目有哪些运算;
(二)运算之间的先后顺序;
(三)式子中有无应先整理的式子,如先分解因式的,小数系数的式子;
(四)是否有简便方法,哪些地方容易出错或忽视
四、培养总结归纳经典题目的能力
优化解题,激发学习兴趣,简便运算。典型例题举一反三,多观察多思考多总结。不是停留在会做,而是达到熟练准确的程度。总之,要通过分析问题,解决问题,反复的练习纠错总结再练习的方式,解决分式运算的问题。
分式的教学反思2
在几年前,我曾听了一节《认识分式》的公开课,带给我很大的触动,一直觉得这节课很难上,可是为什么同样的课别人能上得如行云流水一般顺畅自然。那节课也改变了我很多教学的思路,于是,这次我选择了这一节课做为了我的公开课。
1、关于概念
对于分式概念的引出,我曾思考了好几种思路,最后,还是结合学生的学情,采用先复习整式概念,出现一些不是整式的代数式,再引出今天的课题。能解释一些简单代数式的实际背景和几何意义是新课标的明确要求,所以在下定义前,我给出了三个实际的问题背景,让学生感受到分式是解决实际问题的又一重要模型。最后,在给出定义前,给予学生思考,总结的时间,让学生自己发现分式的.共同特征,从而提炼出分式定义中重要的三个要点,为后面的内容做铺垫。
2、关于应用
由于有整式的学习基础,我把列分式和求分式的值直接放手给学生先自己去做,在学生的解题过程中,注意引导学生分析实际问题的数量关系,注意解题过程中的书写格式,在巡堂时发现问题及时给学生指出纠正,给予了学生充分的时间,也注重了学生学习的自主性。
3、关于条件
对于分式无意义、有意义、值为0的三个条件,是本节课的重难点,我在这里主要通过与分数的类比,让学生自己发现这三种情况下分别需要满足的条件,特别是值为0的条件的讲解中,对学生容易
忽视的地方及时进行引导和补充,加深学生的印象。由于课本上只给出有意义的条件下例题的书写,所以在讲解几个例题时,我还强调了另外两种情况的解题格式。在小结完三种情况后,再给出相应的练习,对刚学的知识予以巩固。
由于内容较多,在对课堂某些环节的处理上还不够流畅,最后还有一道练习没有讲完,心里觉得很遗憾。对这节课上不足的地方我也认真的思考,总结如下:
1、课堂教学中,我注重了启发式教学,也设计了很多问题,但有些问题提出后,还是没有给予学生足够的思考空间,特别在后期时间较紧的时候,有些问题没等学生思考就直接给出答案,以致有些学生的印象不是很深刻。
2、在练习的设计上,还需要更加周密的选择,充分考虑学生的学习基础以及接受能力,从而在课堂上更加充分的调动学生的积极性,让学生更多的参与到课堂上来,集中学生的注意力。
3、整堂课的教学思路和教学方法还是偏传统化,没有更新更好的突破,对新课程要求的新思路体现不强,这也是我一直需要提升和思考的地方。
以上就是我对本次公开课的教学反思,今后我将多与新老教师交流,虚心听取老教师优秀教学案例。取他人之长补我的不足之处,争取在教学上能更上一层楼!
分式的教学反思3
分式是八年级数学的第一章,经历了三周多的学习,学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:
一、教学中的发现
本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的.代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。
二、教学中的重建
分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的基本性质做到灵活运用。
再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!
分式的教学反思4
美国学者波斯纳提出:“一个教师的成长=经验+反思”。一个人或许工作了二十年,如果没有反思,也只是一个经验的二十次重复。这样看来,反思对于数学课堂来说是十分重要的。我们所说的教学反思是教师以自己的教学活动过程为思考对象,来对自己所做出的行为、决策以及由此所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进能力发展的途径。那么在数学教学中我们不能忽视反思的重要,我们该反思些什么,又要如何反思?
1.对于活动的反思。这是个体在行为完成之后对自己的行动、想法和做法的反思。
2.活动中的反思。个体在行为过程中对自己的表现、想法、做法进行反思。
3.为活动反思。这种反思是以上两种反思的结果,以上述两种反思为基础来指导以后的活动。
对于这些抽象的理论,具体到我们数学课的反思我们怎么来理解呢?下面我们从一个教学案例来看。
案例:湘教版八年级下册《分式和它的基本性质》的反思
对于《分式和它的基本性质》的反思,我们可以根据教学的基本程序结合教学反思的主要内容来进行反思。
一、对课题及内容的反思
《分式和它的基本性质》这节课,我们学习到了分式的概念,书上是这么得出这个概念来的:一个整数m除以一个非零整数n,所得的商记作,称为分数,类似地,一个多项式f,除以一个非零多项式g,所得的商记作,把叫作分式。其中f叫作分子,g叫作分母。在提出了分式的概念后,书中还特别提出多项式也看成分式。例如,x-y可以看成分式。
我们在七年级学习单项式和多项式时学习了整式:整式是单项式与多项式的统称。这节课我们所学的分式的概念应该是相对于整式来说的,但是如果按照书上的说法难免让学生觉得:整式都可以写成分式的形式,那么所有的整式都是分式,整式就是分式的一种。为了避免这种情况的出现,我们应该采用这种分式概念的定义:用A、B表示两个整式,A÷B就可以表示成的形式.如果分母中含有字母,式子就叫做分式.其中A叫做分式的分子,B叫做分式的分母.采用分式的这种定义,学生就能很好地把握分式的特点,把它与七年级学习的整式的概念区别开。我们作为老师,在上课的时候不能完全奉教材为“圣旨”,我们应该思考学生更能理解什么、更容易掌握什么、怎么说才能让他们更好地接受,尤其是课题。为了更好地教学,我们都应该好好地进行反思。
二、对教学过程的反思
在上这节课时,可以从分数的概念类比出分式的概念,这样学生更好比较记忆,找出他们的.异同。在提出了分式的概念后,我们可以设置一些式子,让学生判断是否为分式,或者让学生自己举出几个分式的例子来,通过这种方式可以加深学生对知识点的理解,并且让学生从练习中把握好分式概念中重要的两点:
1、分母中含有字母.
2、如同分数一样,分式的分母不能为零.
在讲分式的基本性质时同样可以先根据分数的基本性质类比得出,再通过练习加深学生对知识点的理解。
老师在教学过程中要善于观察学生的反映,及时调整语言、措辞、以及适当的问题和教法,促进学生对知识点的掌握,除了自己设置问题外,还要给学生提问的机会和时间。
对于课程中的教学反思,是为了总结学生更能接受哪一种授课方式、哪一种教学手段,什么样的语言他们更好理解掌握,也是为了更好地上好下一节课。
三、对学生课堂练习及作业的反思
课堂练习可以直接反映出学生对知识的掌握情况,老师需要在课堂中及时发现并解决好学生在学习中的问题。书上课堂练习的题型有两种,一种是连线题,一种是填空题。我发现学生连线题都做得很好,但是填空题有些错误。比如部分学生不知道从何入手,这时我们应该让他们回想分式的基本性质,引导、提示他们观察分式分母间的联系:1-x=-(x-1),这样观察得出,由等式左边到右边需要把分式的分子分母同时乘以-1,这样题目的突破口找到了,题目也就不难解决了。
这堂课学生究竟掌握了多少知识?掌握得怎么样?这些问题可以从课后作业中得出答案,所以,作为老师,我们要认真批改好课后作业。在批改作业的过程中,我们也能发现学生对知识点的掌握情况,把学生的易错点总结出来,分析错误多出在哪些知识点上,反思采用何种方法才能让学生更好地理解、掌握这些易错的知识点。
分式的教学反思5
分式一章的第一课时教学,利用引例列出的代数式进行归纳比较,得出分式的概念,抓住分式概念最本质的特征“分母含有字母”,从而研究:分式有意义无意义的条件、分式的值为零的条件、分式的值为正数负数整数等条件,解决各种数学问题。
在解决分式的值为零,分子为零且分母不为零的题型时,有考虑字母的值的取舍的题目,采用学生在黑板上的说理方法比我原来的方法更有效,学生的方法是:由分子x2-4=0求得x=2及x=-2,再分别将求得的字母的.值代入分母进行计算,使分母为零的情况舍去,使分母不为零的保留,进行这样的取舍检验,对于分母不是一次多项式的情况就能顺利地区分出来,学生使用的这个方法好。
在转化求解时,发现学生对一元一次不等式组的解题还是比较生疏的,为了使学生全面提高学习效果,在遇有类似情况时还是复习一下更有效果。学习的主体是学生,不是课堂的花架子。
对于-a2-1一定为负数,也同样要师生协作,生生协作讨论研究,确保全体学生理解和灵活应用。
对于题目:整数x取何值时,分式4/x-1的值为整数,学生的理解和解题也是一个难点。
由于学生没有课本,我们的课堂学案应设计的更具实用性,课堂知识内容的表达要更加便于学生理解和接受。
分式的教学反思6
解分式方程的思想是将分式方程转化为整式方程,验根是解分式方程必不可少的步骤。分式方程又是解决实际问题的工具之一。
教学设计中蕴涵的数学思想和数学方法:《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。
教学目标:
1.了解分式方程的概念,和产生增根的原因。
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
重点、难点
1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的'增根。
3.认知难点与突破方法
解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。
要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。
分式的教学反思7
在教学分式的过程中,我发现学生们对分式的概念和计算方法掌握不够深入,容易出现困惑和错误。因此,我对分式的教学进行了反思和总结。
我发现在分式的概念和定义方面,学生们很容易混淆分子和分母的概念,导致计算出错。因此,在教学中我加强了对分子和分母的概念解释,并且通过实际例子来让学生更好地理解。同时,我也强调了分式中分子和分母的运算规律。
分式计算中的分母不能为零也是一个容易出错的地方。在教学中,我重点讲解了分母为零的特殊情况,并通过练习让学生加深了对此的理解。
最后,分式简化和通分也是学生容易混淆和犯错的地方。因此,在教学中,我通过实例演示和练习,让学生掌握了分式简化和通分的'方法和规律,并能够灵活应用到不同的题目中。
通过这次教学反思和总结,我更好地理解了学生在分式学习中面临的难点和困惑,并且制定了更加清晰和系统的教学计划,希望能够帮助学生更好地掌握分式的概念和方法。
分式的教学反思8
一、对课题及内容的反思
《分式和它的基本性质》这节课,我们学习到了分式的概念,在七年级时学习单项式和多项式时学习了整式:整式是单项式与多项式的统称。这节课我们所学的分式的概念应该是相对于整式来说的,但是如果按照书上的说法难免让学生觉得:整式都可以写成分式的形式,那么所有的整式都是分式,整式就是分式的一种。为了避免这种情况的出现,我们应该采用这种分式概念的定义:用A、B表示两个整式,A÷B就可以表示成的形式。如果分母中含有字母,式子就叫做分式。其中A叫做分式的分子,B叫做分式的分母。采用分式的这种定义,学生就能很好地把握分式的特点,把它与七年级学习的整式的概念区别开。我们作为老师,在上课的时候不能完全奉教材为“圣旨”,我们应该思考学生更能理解什么、更容易掌握什么、怎么说才能让他们更好地接受,尤其是课题。为了更好地教学,我们都应该好好地进行反思。
二、对教学过程的`反思
在上这节课时,可以从分数的概念类比出分式的概念,这样学生更好比较记忆,找出他们的异同。在提出了分式的概念后,我们可以设置一些式子,让学生判断是否为分式,或者让学生自己举出几个分式的例子来,通过这种方式可以加深学生对知识点的理解,并且让学生从练习中把握好分式概念中重要的两点:
1、分母中含有字母。
2、如同分数一样,分式的分母不能为零。在讲分式的基本性质时同样可以先根据分数的基本性质类比得出,再通过练习加深学生对知识点的理解。
在教学过程中要善于观察学生的反映,及时调整语言、措辞、以及适当的问题和教法,促进学生对知识点的掌握,除了自己设置问题外,还要给学生提问的机会和时间。
三、对学生课堂练习及作业的反思
课堂练习可以直接反映出学生对知识的掌握情况,老师需要在课堂中及时发现并解决好学生在学习中的问题。课堂练习的题型设计两种,一种是连线题,一种是填空题。我发现学生连线题都做得很好,但是填空题有些错误。比如部分学生不知道从何入手,这时我们应该让他们回想分式的基本性质,引导、提示他们观察分式分母间的联系,这样观察得出,由等式左边到右边需要把分式的分子分母同时乘以还是除以,这样题目的突破口找到了,题目也就不难解决了。
分式的教学反思9
采取的教学方法是引导发现教学法:用数、式通性的思想,类比分数。引导学生独立思考、小组合作,完成对分式概念及意义的自主探索,突出数学合情推理能力的养成;通过 “课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力。让学生自己阅读课文,然后提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程之中获得了解决新知识的途径,学生感到数学知识原来就这么简单。我在这一环节提问问题注意了循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成。
本节课中,我设计了三个例题,第一个例题是区分整式与分式,第二个例题是未知数取什么值可以使分式有意义,第三个例题是当未知数取什么值时分式的值为零。并且,我有意的在每个例题之后加入了讨论和练习题,让学生及时总结及时运用,目的就是让学生切实掌握概念。三个例题也是先易后难、由简到繁、层层递进,三个例题之后我安排了一个讨论探究题,难度稍微大一点,但学生因为有前面对概念理解的基础,在理论上具备了解题的依据,最后还是通过小组合作解决了这一问题。我密切关注学生探究的过程,对学生活动既放手,但又不袖手旁观,尽量参与、掌握、了解学生活动的整个过程,随时发现问题,让学生动手实践、自主探索与合作交流真正落到了实处。 通过这节课的教学我对大家说的这两句话认识非常深刻。一是:只要你给学生创造一个自由活动的空间,学生便会还给你一个意外的惊喜。二是:学生的'潜力是无穷的,只有我们想不到,没有学生做不到的。
本节课的缺点,我认为有:一是在体现数学的实用价值方面不到位。二是我本人普通话不是很好。三是在因材施教方面做得还不到位,对学困生的照顾做的不是很好,课后的“拓展应用”对学困生来说就有相当大的困难 ,在这一环节没有呈现出梯度性。在课程改革的今天,我们应对数学教学活动充分渗透新课标理念,为学生营造数学活动空间,创设教学情境,教学活动要把准教材,关注学生探究活动,关注学生的发展,让学生学得轻松,学得开心,以真正达到“教是为了不教”的目的。
分式的教学反思10
本节课的内容有三点:分式的基本性质、约分、通分。总的来说分式的基本性质比较简单。因为分式的基本性质和分数的基本性质一样,一理通,百理通。约分和通分都是根据分数的基本性质来做的。但是在实际计算中,分式的.约分和通分比分数要复杂,这是因为在这之前需要先对分子分母进行因式分解,再找出最简公分母,这中间还有分式是否有意义的问题。因式分解这个知识点是上学期学的,必须要复习。所以我对本节课的内容做了如下安排,先讲基本性质和约分,中间花一段时间复习因式分解,使得基础比较差的学生也能接受,而通分的内容就安排到第二课时,重点进行练习。
引入部分做到了由旧知,即分数的基本性质来推出分式的基本性质,进行类比,知识过渡自然。
从课后学生作业反馈的情况看,学生的算理都明白了,但是在计算中错误率较高,说明以前的知识还不牢固,计算能力不强。
在下节课中要有针对性的让学生练习!
分式的教学反思11
经过一节课的教学,我个人认为有可取之处,但也存在不足。
一、优点
本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
是体会到一节课的科学设计不仅对一节课的.成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
二、不足之处:
讲解的还不够充分,大部分同学能够掌握本节课的内容,但相对基础较差的同学还是很难理解,应该针对他们出一些难度小的题目给他们做,并给与详细的讲解。
学生与老师比较熟悉,有时课堂气氛过于活跃,使得在管理的过程中浪费了宝贵的时间。
忽略了例题的示范性和板书的清晰、条理性。
课堂准备还可以再充分一些。
分式的教学反思12
初三第一轮复习至关重要,在这一轮复习中我们教师如能精心策划每一节课(学习目标的确定、习题的分层设计、课堂中学生们的学习方式的选择……),就会让不同层次学生都能得以提升,从而提高数学平均成绩。所以,在复习《一元一次方程和分式方程的应用》这节课时,我首先仔细翻阅了七年级(上)和八年级(下)的数学书,然后从这两本书中选择了具有代表性的十二道题应用题留做了家庭作业,要求学生们认真写在作业本上,目的在于回忆各类题的相关公式和思维方式,从而把基础牢牢抓住。
通过课前组长作业的检查,我发现了很多问题,例如:行程问题单位不统一或设中速度无单位、利润问题弄不清各种价(售价、标价、定价、进价……)的含义、不认真审视题中的'关键字眼等等。看到这些“意料中”的错误,我感觉我的前置性作业做到了“查缺”,那么课堂上如何“补漏”就成为了最大的关键。针对课前的检查,我确定了课堂上学生们的学习方式:先通过组内的“群学”解决共性问题,再通过“对学”进行“一帮一”,最后再通过几对“师友”间的相互点评进行全班性的交流和共识,我认为本节课完成了我在备课中设定的教学目标,同学们通过一系列的学习方式解决了“独学”中遇到的困惑。
但是本节课留给我更多是思考:如何通过“独学、对学、群学”等学习方式高效地完成初三的各阶段复习?每种方式进入初三又该如何改进和发展才能恰到好处地发挥作用呢?相信“方法总比困难多”,我会在今后的教学中不断吸取他人成功的经验,在摸索中前进。
分式的教学反思13
《分式》教学中,通过对教材的研读与操作,我觉得,教学应当根据学情对教材灵活应用,不必拘泥于教材,按部就班,甚至死板硬套,造成学生理解、应用的困难。
(一)适度添加“移号法则”。利用对比的方法认识了分式的基本性质以后,课本的编排是约分、通分,可在相关的例题训练中都不同程度的涉及到了“移号”的问题,而“移号法则”在新教材中有删略,仅仅体现在习题P9 第5题“不改变分式的值,使分式的分子、分母中都不含”-”号”,显然,教材的编写者试图淡化这一重要变形,仅仅从有理数的除法则方面再次加以提醒,这其实是远远不够的。基于此,我在引导学生完成粉饰的基本性质以后,对本题进行了深入探究:通过本题,你发现了什么?----通过提炼总结,得出了“分式、分式的分子、分式的`分母中,改变其中两项的符号,分式的值不变(移号法则)”的结论。这样,通过铺垫,学生在完成P6 例3(1)、P11 例1(2)、例2(2)等问题时,困难就迎刃而解了。
(二)对整数指数幂点的处理。当前,教材倾向于“数学从实践中来”的理念的践行,很多知识点要从实际问题中反映出来,然后加以研讨,而就整数指数幂而言,似乎完全不必:数学是一门有严密的逻辑体系的学科,从原有的“正整数指数幂”的基础上构建,其实更符合数学科的特点。因此,在具体的教学中不妨引导学生从数的发展史方面进行类比教学,使学生的知识体系有一个渐进的完善过程,更有利于其对整个体系的构建。
(三)对列分式方程解应用题方面,是本章的教学难点,也是学生(何止是学生?)颇感头疼的部分。解决这个问题的关键是正确审题。学生依据已有的生活、知识经验对问题进行解读,提取、整合相关信息,找出相等关系(等量关系),抓住这个突破口,列方程也就顺理成章了,故而在这一部分的教学中,应当充分让学生身体,准确理解题意,这才是关键环节,教材的设计顺应了学生的常规思路,可让学生在预习时充分利用,课堂教学时应着力找出相等关系。
分式的教学反思14
经过一节课的教学,我个人认为有可取之处,但也存在不足
一、优点
(1)本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
(2)是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的.提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
(3)是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
二、不足之处:
(1)讲解的还不够充分,大部分同学能够掌握本节课的内容,但相对基础较差的同学还是很难理解,应该针对他们出一些难度小的题目给他们做,并给与详细的讲解
(2)学生与老师比较熟悉,有时课堂气氛过于活跃,使得在管理的过程中浪费了宝贵的时间
(3)忽略了例题的示范性和板书的清晰、条理性。
(4)课堂准备还可以再充分一些
分式的教学反思15
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
我认为比较成功的
1、把思考留给学生,课堂教学试一试这个环节中,我把更多的思维空间留给学生。问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的'原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。
【分式的教学反思】相关文章:
分式教学反思02-14
分式的乘除教学反思03-31
《分式的乘除》教学反思03-31
分式和方程教学反思12-08
《分式方程》教学反思03-25
《认识分式》优秀教学反思11-20
分式方程教学反思14篇02-19
分式和方程教学反思9篇12-08
《学会反思》教学反思09-08
精选教学反思04-21