初中数学二次函数知识点总结

时间:2024-03-11 08:28:29
  • 相关推荐
初中数学二次函数知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它在我们的学习、工作中起到呈上启下的作用,不妨坐下来好好写写总结吧。我们该怎么去写总结呢?下面是小编为大家整理的初中数学二次函数知识点总结,欢迎大家分享。

  一、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大),则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  二、二次函数的三种表达式

  一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2+k[抛物线的顶点P(h,k)]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a

  k=(4ac-b2)/4a

  三、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  四、抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b2)/4a)。当-b/2a=0时,P在y轴上;当Δ=b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

  6.抛物线与x轴交点个数:

  Δ=b2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  五、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。

  它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到。

  当h<0时,则向左平行移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象。

  当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象。

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a).

  3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

【初中数学二次函数知识点总结】相关文章:

数学二次函数教学反思04-22

二次函数教学反思09-26

初中数学知识点总结02-07

初中数学知识点总结10-25

人教版初中数学知识点总结10-25

人教版初中数学知识点总结(精华)10-26

北京初中数学知识点01-24

数学向量知识点总结02-07

新人教版初中数学知识点总结(完整版)10-26

初中物理知识点总结12-07