初一数学知识点总结

时间:2024-05-29 13:43:58
初一数学知识点总结

  总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,不如立即行动起来写一份总结吧。那么你知道总结如何写吗?以下是小编收集整理的初一数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

初一数学知识点总结1

  概率

  一、事件:

  1、事件分为必然事件、不可能事件、不确定事件。

  2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

  3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

  4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

  二、等可能性:是指几种事件发生的可能性相等。

  1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

  2、必然事件发生的概率为1,记作P(必然事件)=1;

  3、不可能事件发生的概率为0,记作P(不可能事件)=0;

  4、不确定事件发生的概率在0—1之间,记作0

  三、几何概率

  1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

  2、求几何概率:

  (1)首先分析事件所占的面积与总面积的关系;

  (2)然后计算出各部分的面积;

  (3)最后代入公式求出几何概率。

  初一数学学习方法技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的.学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

  提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

  有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

初一数学知识点总结2

  第一章中华文明的起源(1—12)

  1、我国境内已知的最早人类是元谋人,距今170万年P2

  2、人与动物的根本区别是会不会制造工具P2

  3、北京人和山顶洞人生活的时间和地点P1.3.4

  4、从猿到人的演变过程中,劳动起了决定作用。P2

  5、北京人使用天然火,山顶洞人懂得人工取火并已经掌握了磨光和钻孔技术。P4—5

  6、北京人过群居生活,山顶洞人过氏族生活P5

  7、河姆渡人生活在长江流域、半坡人生活在黄河流域,都已经使用磨制石器P7—8

  8、河姆渡人栽培水稻,半坡人种粟,我国是世界上最早种植水稻和粟的国家。P7—8

  9、大汶口文化晚期中出现了私有财产和贫富分化。P7—P8

  10、炎帝、黄帝部落结成联盟,形成了日后的华夏族,炎帝、黄帝被尊奉为华夏族的祖先。P12

  11、被称为中华民族“人文初祖”的是黄帝。P13

  12、尧舜禹的“禅让”:民主推选部落联盟首领的方法。P14

  第二章夏商西周春秋战国(13—40)

  1、公元前20xx年,禹建立夏朝,这是我国历第一个奴隶制王朝。P15

  2、汤灭夏,建立商朝,盘庚迁殷后,商朝统治稳定。P21

  3、公元前1046年,周武王经牧野之战灭商,建立周朝,定都镐。P23

  4、西周实行分封制,加强了对各地的统治。P23—24

  5、公元前771年,西周灭亡。P24

  6、商朝的`司母戊鼎是世界上已发现的的青铜器,湖南宁乡出土了造型奇特的四羊方尊P26

  7、“三星堆”文化遗址出土的青铜面具、大型青铜立人像、青铜神树等引起了中外人士的瞩目。P27

  8、农业、畜牧业、手工业和商业的繁荣,形成了我国夏、商西周灿烂的青铜文明。P27

  9、公元前770年,周平王东迁洛,史称“东周”。东周分为春秋和战国两个时期。P30

  10、春秋五霸:齐桓公、晋文公、楚庄王、吴王夫差、越王勾践。P30—32

  11、齐桓公提出“尊王攘夷”的口号。P31

  12、决定晋文公成为中原霸主的战役是城濮之战。P32

初一数学知识点总结3

  1、单项式的定义:

  由数或字母的积组成的式子叫做单项式。

  说明:单独的一个数或者单独的一个字母也是单项式.

  2、单项式的系数:

  单项式中的数字因数叫这个单项式的系数.

  说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的'32

  系数是1;4.8a的系数是4.8; 3

  ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,

  ?4xy2的系数是4;2x2y的系数是4;

  ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的

  系数是-1;ab的系数是1;

  ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2.

  3、单项式的次数:

  一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1

  的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,

  而不是7次,应注意字母z的指数是1而不是0;

  ⑵单项式的指数只和字母的指数有关,与系数的指数无关。

  ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;

  4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。

  5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

初一数学知识点总结4

  1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

  2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

  3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠———————。

  4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式。

  单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)

  单项数的次数:是指单项式中所有字母的`指数的和。(注意指数1)

  5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式。特别注意多项式的项包括它前面的性质符号。它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

初一数学知识点总结5

  1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

  2、单项式中的数字因数叫做这个单项式的系数。

  3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

  5、多项式里次数项的次数,叫做这个多项式的次数。

  6、把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的.系数是合并前各同类项的系数的和,且字母部分不变。

  7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

初一数学知识点总结6

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:

  含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的'一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

初一数学知识点总结7

  1、相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:

  ⑴相反数是成对出现的;

  ⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2、相反数的性质与判定

  ⑴、何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3、相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的'距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4、相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“—”即可求得(如:5的相反数是—5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“—”,然后化简(如;5a+b的相反数是—(5a+b)。化简得—5a—b);

  ⑶求前面带“—”的单个数,也应先用括号括起来再添“—”,然后化简(如:—5的相反数是—(—5),化简得5)

  5、相反数的表示方法

  ⑴一般地,数a的相反数是—a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,—a<0(正数的相反数是负数)

  当a<0时,—a>0(负数的相反数是正数)

  当a=0时,—a=0,(0的相反数是0)

初一数学知识点总结8

  一、知识梳理

  :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

  :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

  注:有限小数和无限循环小数都可看作分数。

  :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。:绝对值的概念:

  (1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

  (2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  注:任何一个数的绝对值均大于或等于0(即非负数).

  :相反数的概念:

  (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

  (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

  :有理数大小的比较:

  有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

  数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

  用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

  :有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的.绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.:有理数加法运算律:

  加法交换律:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  :有理数减法法则:减去一个数,等于加上这个数的相反数。

  :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a0 a是正数;a0 a是负数;

  a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数0,小数-大数0.

初一数学知识点总结9

  解一元一次方程:

  1、解一元一次方程的一般步骤

  去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

  2、解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

  3、在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

  使方程逐渐转化为ax=b的最简形式体现化归思想。

  将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

  14、一元一次方程的应用

  1、一元一次方程解应用题的类型

  (1)探索规律型问题;

  (2)数字问题;

  (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

  (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

  (5)行程问题(路程=速度×时间);

  (6)等值变换问题;

  (7)和,差,倍,分问题;

  (8)分配问题;

  (9)比赛积分问题;

  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。

  2、利用方程解决实际问题的基本思路:

  首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

  列一元一次方程解应用题的五个步骤

  (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系。

  (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。

  (3)列:根据等量关系列出方程。

  (4)解:解方程,求得未知数的值。

  (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。

  初一数学方法技巧

  1、请概括的说一下学习的方法

  曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

  2、请谈谈超前学习的好处

  曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

  其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

  再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

  最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

  3、请谈谈联想与总结

  曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的.某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

  4、那么我们怎样预习呢?

  曰:“先说说学习的目标:

  (1)知道知识产生的背景,弄清知识形成的过程。

  (2)或早或晚的知道知识的地位和作用:

  (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

  再说具体的做法:

  (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

  (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

  (3)对于例题及习题的处理见上面的(2)及下面的第五条。

初一数学知识点总结10

  一、知识梳理

  知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

  知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

  注:有限小数和无限循环小数都可看作分数。

  知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

  知识点4:绝对值的概念:

  (1)几何意义:数轴上表示a的点与原点的距离叫做数a的`绝对值,记作|a|;

  (2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  注:任何一个数的绝对值均大于或等于0(即非负数).

  知识点5:相反数的概念:

  (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

  (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

  知识点6:有理数大小的比较:

  有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

  数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

  用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

  知识点7:有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  知识点8:有理数加法运算律:

  加法交换律:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

  知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

初一数学知识点总结11

  代数初步知识

  1、代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式、注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式、

  2、列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×112应写成a;

  233(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  a(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a、

  3、几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a-b;a与b差的平方是:(a-b);

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a+b,负数是:-a-b,非负数是:a,非正数是:-a、2222222

  有理数

  1、有理数:(1)凡能写成

  qp(p,q为整数且p0)形式的数,都是有理数、正整数、0、负整数统称整数;正分数、负分数

  统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  正有理数

  (2)有理数的分类:

  ①有理数零负有理数正整数正分数负整数负分数整数

  ②有理数分数正整数零负整数正分数负分数

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  1.a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数、

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线、

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的'相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数、

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;

  注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (a0)a(a0)a(2)绝对值可表示为:a0(a0)或a;绝对值的问题经常分类讨论;

初一数学知识点总结12

  一、目标与要求

  1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3、培养学生获取信息,分析问题,处理问题的能力。

  二、重点

  从实际问题中寻找相等关系;

  建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。

  三、难点

  从实际问题中寻找相等关系;

  分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

  四、知识框架

  五、知识点、概念总结

  1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

  3、条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0。

  4、等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5、合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6、移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7、一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的.一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

  8、同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9、方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  10、列一元一次方程解应用题:

  (1)读题分析法:多用于和,差,倍,分问题

  仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套—————,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:多用于行程问题

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11、列方程解应用题的常用公式:

  12、做一元一次方程应用题的重要方法:

  (1)认真审题(审题)

  (2)分析已知和未知量

  (3)找一个合适的等量关系

  (4)设一个恰当的未知数

  (5)列出合理的方程(列式)

  (6)解出方程(解题)

  (7)检验

  (8)写出答案(作答)

  一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题。

初一数学知识点总结13

  初一下册知识点总结

  1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

  2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

  4.零指数与负指数公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

  (2)完全平方公式:

  ① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

  ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

  ※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

  注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  10.合并同类项法则:系数相加,字母与字母的'指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.

  余角重要性质:同角或等角的余角相等.

  2、①直线公理:过两点有且只有一条直线.

  线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

  3、三角形的内角和等于180

  三角形的一个外角等于与它不相邻的两个内角的和

  三角形的一个外角大于与它不相邻的任何一个内角

  4、n边形的对角线公式:

  各个角都相等,各条边都相等的多边形叫做正多边形

  5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

  6、判断三条线段能否组成三角形:

  ①a+b>c(a b为最短的两条线段)②a-b

  7、第三边取值范围:

  a-b< c

  8、对应周长取值范围:

  若两边分别为a,b则周长的取值范围是 2a

  如两边分别为5和7则周长的取值范围是 14

  9、相关命题:

  (1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

  (2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。

  (3)任意一个三角形两角平分线的夹角=90+第三角的一半。

  (4) 钝角三角形有两条高在外部。

  (5) 全等图形的大小(面积、周长)、形状都相同。

  (6) 面积相等的两个三角形不一定是全等图形。

  (7) 三角形具有稳定性。

  (8) 角平分线到角的两边距离相等。

  (9)有一个角是60的等腰三角形是等边三角形。

初一数学知识点总结14

  第一章有理数

  1、大于0的数是正数。

  2、有理数分类:正有理数、0、负有理数。

  3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

  4、规定了原点,单位长度,正方向的直线称为数轴。

  5、数的大小比较:

  ①正数大于0,0大于负数,正数大于负数。

  ②两个负数比较,绝对值大的反而小。

  6、只有符号不同的两个数称互为相反数。

  7、若a+b=0,则a,b互为相反数

  8、表示数a的点到原点的距离称为数a的绝对值

  9、绝对值的三句:正数的绝对值是它本身,

  负数的绝对值是它的相反数,0的绝对值是0。

  10、有理数的计算:先算符号、再算数值。

  11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

  12、乘除:同号得正,异号的负

  13、乘方:表示n个相同因数的乘积。

  14、负数的奇次幂是负数,负数的偶次幂是正数。

  15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

  16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

  17、左边第一个非零的数字起,所有的数字都是有效数字。

  【知识梳理】

  1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

  2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

  3.倒数:若两个数的积等于1,则这两个数互为倒数。

  4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的.相反数,0的绝对值是0;

  几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

  5.科学记数法:,其中。

  6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

  7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

  一元一次方程知识点

  知识点1:等式的概念:用等号表示相等关系的式子叫做等式.

  知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.

  说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.

  知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.

  例2:如果(a+1) +45=0是一元一次方程,则a________,b________.

  分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.

  知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.

  (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.

  即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.

  说明:等式的性质是解方程的重要依据.

  例3:下列变形正确的是( )

  A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1

  C.如果x=y,则x-5=5-y D.如果则

  分析:利用等式的性质解题.应选D.

  说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.

  知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

  知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.

  ⑵移项时,一定记住要改变所移项的符号.

  知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.

  例4:解方程 .

  分析:灵活运用一元一次方程的步骤解答本题.

  解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.

  说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.

  知识点8:方程的检验

  检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.

  注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

  三、一元一次方程的应用

  一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.

  一、行程问题

  行程问题的基本关系:路程=速度×时间,

  速度=,时间=.

  1.相遇问题:速度和×相遇时间=路程和

  例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?

  解:设甲、乙二人t分钟后能相遇,则

  (200+300)× t =1000,

  t=2.

  答:甲、乙二人2钟后能相遇.

  2.追赶问题:速度差×追赶时间=追赶距离

  例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则

  (300-200)t=1000,

  t=10.

  答:10分钟后乙能追上甲.

  3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.

  解:设小船在静水中的速度为v,则有

  (v+20)×3=90,

  v=10(千米/小时).

  答:小船在静水中的速度是10千米/小时.

  二、工程问题

  工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.

  例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?

  解:设甲再单独做x天才能完成,有

  (+)×5+=1,

  x=11.

  答:乙再单独做11天才能完成.

  三、环行问题

  环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.

  例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?

  解:设经过t分钟二人相遇,则

  (300-200)t=400,

  t=4.

  答:经过4分钟二人相遇.

  四、数字问题

  数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.

  例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.

  解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得

  [10(x-1)+x]+[10x+(x+1)]=33,

  x=1,则x+1=2.

  ∴这个数是21.

  答:这个两位数是21.

  五、利润问题

  利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?

  解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,

  x=162.

  48+x=48+162=210.

  答:该电器每台进价、定价各分别是162元、210元.

  六、浓度问题

  浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度

  例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?

  解:设需要“84”消毒液x克,根据题意得

  =,

  x=20.

  答:需要“84”消毒液20克.

  七、等积变形问题

  例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)

  第9 / 11页

  分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:

  玻璃杯里倒掉的水的体积=长方体铁盒的容积.

  解:设玻璃杯中水的高度下降了xmm,根据题意,得

  经检验,它符合题意.

  八、利息问题

  例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.

  (1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.

  (2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?

  (3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?

  分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.

  解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.

  实得利息 =利息×(1-20%)=187×0.8=149.6元.

  (2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.

  解方程,得x=70000.

  经检验,符合题意.

  答:这笔资金为70000元.

  (3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.

  解方程,得x=6000.

  经检验,符合题意.

  答:这笔资金为6000元.

初一数学知识点总结15

有理数及其运算板块:

  1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。

  2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

  3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

  整式板块:

  1、单项式:由数与字母的乘积组成的式子叫做单项式。

  2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  3、整式:单项式与多项式统称整式。

  4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

  一元一次方程:

  1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

  其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

  大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分

  三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

  数轴的三要素:

  原点、正方向、单位长度(三者缺一不可)。

  任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

  在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

  数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

  绝对值的定义:

  一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

  正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

  绝对值的性质:

  除0外,绝对值为一正数的数有两个,它们互为相反数;

  互为相反数的两数(除0外)的绝对值相等;

  任何数的绝对值总是非负数,即|a|0

  比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

  ①先求出两个数负数的绝对值;

  ②比较两个绝对值的大小;

  ③根据两个负数,绝对值大的反而小做出正确的判断。

  绝对值的性质:

  ①对任何有理数a,都有|a|0

  ②若|a|=0,则|a|=0,反之亦然

  ③若|a|=b,则a=b

  ④对任何有理数a,都有|a|=|—a|

  有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的'数的符号,并用较大数的绝对值减去较小数的绝对值。

  ③一个数同0相加,仍得这个数。

  加法的交换律、结合律在有理数运算中同样适用。

  灵活运用运算律,使用运算简化,通常有下列规律:

  ①互为相反的两个数,可以先相加;

  ②符号相同的数,可以先相加;

  ③分母相同的数,可以先相加;

  ④几个数相加能得到整数,可以先相加。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法运算时注意两变:

  ①改变运算符号;

  ②改变减数的性质符号(变为相反数)

  有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。

  有理数的加减法混合运算的步骤:

  ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②利用加法则,加法交换律、结合律简化计算。

  (注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

  有理数乘法法则:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘,积仍为0。

  如果两个数互为倒数,则它们的乘积为1。

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;

  ②求出各因数的绝对值的积。

  乘积为1的两个有理数互为倒数。注意:

  ①零没有倒数

  ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

  ③正数的倒数是正数,负数的倒数是负数。

  有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②0除以任何非0的数都得0。0不可作为除数,否则无意义。

  有理数的乘方

  注意:

  ①一个数可以看作是本身的一次方,如5=51;

  ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

  乘方的运算性质:

  ①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;

  ③任何数的偶数次幂都是非负数;

  ④1的任何次幂都得1,0的任何次幂都得0;

  ⑤—1的偶次幂得1;—1的奇次幂得—1;

  ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

  有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

  ②如果有括号,先算括号里面的。

【初一数学知识点总结】相关文章:

人教版初一数学知识点总结10-26

北师大版初一数学知识点总结10-26

数学向量知识点总结02-07

初一语文的知识点总结02-12

初中数学知识点总结02-07

苏教版数学中考知识点总结10-25

初中数学知识点总结10-25

初一英语上册知识点总结12-16

初一上册生物知识点总结12-09